Electronic supplementary information

Ion migration mechanism in all-inorganic Ruddlesden-Popper lead halide perovskites by first-principles calculations

Shuai Zhao^{1,2,*} and Li Xiao^{1,2,*}

¹School of Science, Chongqing University of Technology, Chongqing 400054, P. R. China.

²Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing 400054, P.R. China

Email: zhaoshuai@cqut.edu.cn; xiaoli@cqut.edu.cn

Table S1. Optimized lattice constants a and c and bond length of Pb-X for all-inorganic3D CsPbI3, 2D RP Cs2PbX4 (X = Cl, Br, I) and mixed-halide RP Cs2PbI2Cl2.

	<i>a</i> (Å)	c (Å)	$r_{\rm Pb-X}$ (Å)
CsPbI ₃	6.38	-	3.19
Cs ₂ PbCl ₄	5.71	17.58	2.85 (//), 2.88 (⊥)
Cs ₂ PbBr ₄	5.96	18.39	2.98 (//), 3.03 (⊥)
Cs ₂ PbI ₄	6.36	19.57	3.18 (//), 3.23 (⊥)
Cs ₂ PbI ₂ Cl ₂	5.75	19.50	2.87 (//), 3.24 (⊥)

Figure S1. Optimized structures with different vacancies and interstitials for (a) Cs_2PbCl_4 , (b) Cs_2PbBr_4 and (c) Cs_2PbI_4 .

Figure S2. Calculated energy profiles for different migrations of halide vacancies and interstitials in (a) Cs_2PbCl_4 and (b) Cs_2PbBr_4 using the CINEB method.

Figure S3. Optimized structures containing different defects in the mixed-halide RP $Cs_2PbI_2Cl_2$. (a) the vacancy at the 4*c* site; (b) the vacancy at the 4*e* site; the isolated I_1 interstitial of (c) Cl and (d) I; the I_2 interstitial of (e) Cl and (f) I; the I_2 interstitial of (g) Cl and (h) I; the I_2 interstitial of (i) Cl and (j) I.

Figure S4. (a) The P_1 migration of RP Cs₂PbI₄, and (b) calculated Bader charges for Pb cations adjacent to the hopping I ions.

Figure S5. Simulated migration paths for Cs cations in these RP halide perovskites.

Figure S6. Calculated energy profiles of various migrations for Cs cations in (a) Cs_2PbCl_4 , (b) Cs_2PbBr_4 , (c) Cs_2PbI_4 and (d) $Cs_2PbI_2Cl_2$.