Supporting Information (SI)

On the thermoelectric properties of Nb-doped $SrTiO_3$ epitaxial thin films

Arindom Chatterjee^a, Zhenyun Lan^a, Dennis Valbjørn Christensen^a, Federico Bauitti ^b, Alex Morata ^b, Emigdio Chavez-Angel^c, Simone Sanna^{a, d}, Ivano E. Castelli^a, Yunzhong Chen^a, Albert Tarancon, ^{b,e} Nini Pryds ^{a*}

^a Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs Lyngby, Denmark

^b Catalonia Institute for Energy Research (IREC), Jardins de Les Dones de Negre 1, 08930 Sant Adria' Besos, Barcelona, Spain

^cCatalan Institute of Nanoscience and Nanotechnology (ICN2), and Barcelona Institute of Science and Technology (BIST), Bellaterra-08193, Spain.

^d UNIVERSITA' DEGLI STUDI DI ROMA TOR VERGATA and CNR-SPIN Rome, Department of Civil Engineering and Computer Science, Università di Roma Tor Vergata Dipartimento di Ingegneria Civile e Ingegneria Informatica DICII, Via del Politecnico - 1, I - 00133, Roma, Italy.

^e ICREA, 23 Passeig Lluís Companys, Barcelona 08010, Spain

*corresponding	author-	Nini	Pryds	(nipr@dtu.dk)
----------------	---------	------	-------	---------------

I: Calculation of out-of-plane lattice constants by using Poisson ratio

Calculation of the expected *c*-parameter of film from Poisson ratio (ν) is obtained by using the following relations:

$$v = -\frac{\epsilon_t}{\epsilon_l}$$

$$\epsilon_t = \frac{(out - of - plane, c)_{film} - c_{bulk}}{c_{bulk}}$$

$$\epsilon_l = \frac{(in - plane, a)_{film} - a_{bulk}}{a_{bulk}}$$

Assuming a material is stretched or contracted in axial direction against in-plane compressive or tensile strain, then ν is given by the ratio of transverse strain (ϵ_l) to axial strain (ϵ_l)¹. In our case, films are epitaxial and compressively strained (-1.33%) on LSAT substrates. Hence, the in-plane (a_{film}) parameters of the films are same as LSAT substrates (LSAT, a = 3.870 Å) and the a-parameter of bulk SrTi_{0.94}Nb_{0.06}O₃ is known, $a_{bulk} = 3.922$ Å (see main text²). Hence, ϵ_l can be calculated. On the other hand, $\nu = 0.23$ is known for standard perovskites (see main text³) and c_{bulk} is known for SrTi_{0.94}Nb_{0.06}O₃. Therefore, theoretical c_{film} value can be calculated considering an elastic strain.

II: Additional tables

Table S1 Calculated parameters obtained from DFT-based calculations by using a fixed in-plane (3.870 Å) and variable out-of-plane (3.870, 3.906, 3.970 and 3.980 Å) lattice constants of Nb:STO bulk structure.

<i>c</i> -parameter (Å)	η∕-chemical	potential	n (×10 ²¹ , cm ⁻³)	Effective mas $m_e(m_0)$ G-Z	Effective mas $m_h(m_0)$	Ti-d orbital position
	(eV)				G-M	
3.870	-1.146		2.057	0.709 (G-M)	-2.626	$d_{xy}=d_{xz}=d_{yz}$ (at gamma point), $\Delta d=0$ eV
3.906	-1.140		2.104	0.318	-0.756	$d_{xy}\!\!>\!\!d_{xz}\!\!=\!\!d_{yz}$ (at gamma point), $\Delta d\!\!=\!\!0.0122~{\rm eV}$
3.970	-1.121		2.019	0.337	-0.784	$d_{xy} > d_{xz} = d_{yz}$ (at gamma point), $\Delta d = 0.0377 \ {\rm eV}$
3.980	-1.117		2.056	0.339	-0.782	d_{xy} > d_{xz} = d_{yz} (at gamma point), Δd =0.0432 eV

Table S2 calculated chemical potential (η) and Seebeck coefficients (S) at 290K from the measured density of charge carriers (n) by using equation (1-4) in the main text for 31 and 11 nm thick Nb:STO films at variable electron band degeneracy (z) and scattering parameter (r). calculations are done by assuming a fixed effective mass of electrons m^{*} (=1.1m₀, where m₀ is the rest mass of electrons).

Thickness (nm)	<i>n</i> (cm ⁻³)	η (ev)		S (μV/K) for z=6		S (μV/K) for z=4			
		z=6	z=4	r=1	<i>r</i> =1.5	<i>r</i> =2	r=1	<i>r</i> =1.5	r=2
32	1.7×10 ²¹	0.28	0.30	-59	-73	-87	-46	-57	-68
11	9.5×10 ²⁰	0.15	0.20	-86	-105	-124	-67	-83	-98

Table S3 Lattice parameters, and calculated band gap of 6%Nb-doped SrTiO₃ at the SCAN meta-GGA level.

Lattice parameter (Å)	3.87	3.906	3.97	3.98
Band gap (eV)	1.806	1.797	1.735	1.728

III: Additional figures

Fig. S1. Thickness measurements of the Nb:STO films on LSAT substrates by using x-ray reflectivity and ellipsometry techniques.

Fig. S2. Schematic illustration of the Seebeck effect measurement on Nb:STO thin films. A Pt heater and two Ptresistors/thermometers were patterned on top of the film surface by using optical lithography techniques. a-An actual image of the wire-boned Nb:STO film prepared on a chip-carrier for Seebeck coefficient measurement. b- Resistance calibration of the two Ptresistors as a function of temperature. These files were later used to define temperature difference. c- Real time temperature measurement of the two-resistors when a variable current applied to the Pt heater and, d- at the same time Seebeck voltage measurements. e- Seebeck coefficients were calculated from the slope of the ΔV vs ΔT curve.

Fig. S3. X-ray diffraction patterns of Nb:STO films deposited on LSAT-001 substrates.

Fig. S4. Seebeck coefficient measurements of Nb:STO films by two different techniques over a long range of temperature: on-chip Seebeck measurement in a cryostat between 20-300 K and in a LINSEIS instrument within 300-550 K.

Fig. S5. AFM-topography images of Nb-doped \mbox{SrTiO}_3 films on LSAT substrates.

Fig. S6. Bulk crystal structures of Nb-doped SrTiO₃, and unit cells of Nb-doped SrTiO₃ films were considered for electronic band structure calculations.

Fig. S7. Calculated electronic band structures for 4.5, and 8.5 unit cells thick Nb-doped SrTiO₃ films.

Fig. S8 The effective mass calculation by fitting a quadratic function ($y=A+Bx+Cx^2$) at the band edge from the first conduction band as highlighted by the red-line.

References

- ¹ L. Iglesias, A. Sarantopoulos, C. Magén, and F. Rivadulla, Phys. Rev. B **95**, 165138 (2017).
- ² B. Zhang, J. Wang, T. Zou, S. Zhang, X. Yaer, N. Ding, C. Liu, L. Miao, Y. Li, and Y. Wu, J. Mater. Chem. C **3**, 11406 (2015).
- ³ H. Ledbetter, M. Lei, and S. Kim, Phase Transitions **23**, 61 (1990).