Supplementary Information for:

Impact of the polar optical phonon and alloy scattering on the charge-carrier mobilities of FA_{0.83}Cs_{0.17}Pb(I_{1-x}Br_x)₃ hybrid perovskites

Anusit Thongnum^{1,4,*}, Ratchanok Pingaew² and Udomsilp Pinsook^{3,4}

¹Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand ²Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand ³Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10300, Thailand ⁴Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand

*Corresponding author email: anusit@g.swu.ac.th

	$\mu_{LO,e}$	$\mu_{LO,h}$	$\sum \mu_{LO}$	$\mu_{AL,e}$	$\mu_{AL,h}$	$\sum \mu_{AL}$
	$(cm^2V^{-1}s^{-1})$	$(cm^2V^{-1}s^{-1})$	$(cm^2V^{-1}s^{-1})$	$(cm^2V^{-1}s^{-1})$	$(cm^2V^{-1}s^{-1})$	$(cm^2V^{-1}s^{-1})$
$FA_{0.83}Cs_{0.17}Pb(I_{0.83}Br_{0.17})_3$	19.7	13.3	33.0	143.4	85.7	229.1
$FA_{0.83}Cs_{0.17}Pb(I_{0.67}Br_{0.33})_3$	18.2	11.6	29.8	84.1	47.1	131.2
$FA_{0.83}Cs_{0.17}Pb(I_{0.5}Br_{0.5})_3$	13.3	7.9	21.2	51.2	26.8	78.0
$FA_{0.83}Cs_{0.17}Pb(I_{0.33}Br_{0.67})_3$	7.9	6.1	14.0	31.4	22.5	53.9
$FA_{0.83}Cs_{0.17}Pb(I_{0.17}Br_{0.83})_3$	7.9	6.1	14.0	50.0	35.8	85.8

Table S1 Calculated individual charge-carrier mobilities for the FA_{0.83}Cs_{0.17}Pb(I_{1-x}Br_x)₃ alloying system.

Table S2 Calculated total charge-carrier mobilities for the FA_{0.83}Cs_{0.17}Pb(I_{1-x}Br_x)₃ alloying system.

	electron mobility	hole mobility	total charge-carrier mobility	
	$(cm^2V^{-1}s^{-1})$	$(cm^2V^{-1}s^{-1})$	$(cm^2V^{-1}s^{-1})$	
	$\left(\mu_{LO,e}^{-1} + \mu_{AL,e}^{-1}\right)^{-1}$	$\left(\mu_{LO,h}^{-1} + \mu_{AL,h}^{-1}\right)^{-1}$	$\sum \mu$	
$FA_{0.83}Cs_{0.17}Pb(I_{0.83}Br_{0.17})_3$	17.4	11.5	28.9	
$FA_{0.83}Cs_{0.17}Pb(I_{0.67}Br_{0.33})_3$	15.0	9.3	24.3	
$FA_{0.83}Cs_{0.17}Pb(I_{0.5}Br_{0.5})_3$	10.5	6.1	16.6	
$FA_{0.83}Cs_{0.17}Pb(I_{0.33}Br_{0.67})_3$	6.3	4.7	11.0	
$FA_{0.83}Cs_{0.17}Pb(I_{0.17}Br_{0.83})_3$	6.8	5.2	12.0	

Table S3 Calculated polaron binding energies for electrons and holes $(E_{PB,e} \text{ and } E_{PB,h})$ in lead halide perovskites.

	α_e	α_h	ELO	E _{PB,e}	$E_{PB,h}$
			(meV)	(meV)	(meV)
$FA_{0.83}Cs_{0.17}PbI_3$	2.25	2.50	15.0	8.0	10.0
FAPbI ₃	2.57	2.85	11.5	8.0	10.0
FAPbBr ₃	3.37	3.60	16.5	19.8	22.7
$FA_{0.83}Cs_{0.17}PbBr_{3}$	3.53	3.78	15.0	19.8	22.7
$FA_{0.83}Cs_{0.17}Pb(I_{0.83}Br_{0.17})_3$	2.42	2.68	13.0	8.0	10.0
$FA_{0.83}Cs_{0.17}Pb(I_{0.67}Br_{0.33})_3$	2.47	2.77	13.0	8.4	10.6
$FA_{0.83}Cs_{0.17}Pb(I_{0.5}Br_{0.5})_3$	2.68	3.05	13.0	10.0	12.8
$FA_{0.83}Cs_{0.17}Pb(I_{0.33}Br_{0.67})_3$	3.05	3.26	13.0	12.8	14.6
$FA_{0.83}Cs_{0.17}Pb(I_{0.17}Br_{0.83})_3$	3.05	3.26	13.0	12.8	14.6