Decay of Hydrogen Bonding in Mixtures of Aliphatic Heptanols with Bistriflimide Ionic Liquids

Supplementary Information

Václav Pokorný, Vojtěch Štejfa, Květoslav Růžička, Ctirad Červinka*

Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic

*Corresponding author: e-mail: Ctirad.Cervinka@vscht.cz

Supplementary information contain:

- 1. Calculated raw data on densities, vaporization enthalpies and self-diffusivities.
- 2. Information about less significant interactions obtained from simulations.
- 3. Derivation of reference experimental data.
- 4. Comparison of the experimental reference data with the literature.

m (IL) / mg	m (alcohol) / mg	WIL	x_{IL}	M (mixture) / g·mol ⁻¹	Tdemix
	[C4mim][N	Гf2] + heptan-1	-ol (C4H1)		
318.51	91.00	0.7778	0.4923	265.464	336 ¹
	[C4mim][N]	Гf ₂] + heptan-3	-ol (C4H3)		
446.11	126.54	0.7790	0.4941	266.010	-
	[C4mim][NTf2]	+ 3-ethylpenta	n-3-ol (C4E3)		
355.05	98.29	0.7832	0.5002	267.854	276^{2}
	[C ₆ mim][N	Гf ₂] + heptan-1	-ol (C ₆ H ₁)		
448.45	115.92	0.7946	0.5012	282.203	305 ³
	[C6mim][N	Гf2] + heptan-3	-ol (C6H3)		
464.49	123.88	0.7895	0.4934	279.613	-
	[C6mim][NTf2]	+ 3-ethylpenta	un-3-ol (C6E3)		
439.05	114.35	0.7934	0.4993	281.578	259 ²
	[C ₈ mim][N]	Гf2] + heptan-1	-ol (C8H1)		
423.62	104.47	0.8022	0.4977	295.025	277^{2}
	[C ₈ mim][N]	Гf ₂] + heptan-3	-ol (C8H3)		
446.41	111.38	0.8003	0.4948	293.979	-
	[C8mim][NTf2]	+ 3-ethylpenta	un-3-ol (C8E3)		
442.16	103.80	0.8026	0.4985	295.293	246^{2}

Table S1. Mixtures description table with the amount of IL and alcohol, mass fraction (w_{IL}), molar fraction (x_{IL}) and the average molecular mass of the mixture

Table S2. Calculated and literature experimental^a liquid-phase densities (kg m⁻³)^b

	300) K		350 K		400 K
	$ ho_{ m calc}$	$ ho_{ m exp}$	$ ho_{ m calc}$	$ ho_{ m exp}$	$ ho_{ m calc}$	$ ho_{ m exp}$ c
			Pure comp	ound		
heptan-1-ol	812.2	817.6	761.2	780.7	706.5	739.6
heptan-2-ol	814.3	811.7	760.9	771.0	702.4	726.0
heptan-3-ol	813.5	815.6	756.0	772.8	695.5	725.0
2,2-dimethylpentan-1-ol	828.4	-	775.7	-	719.9	-
2,4-dimethylpentan-3-ol	823.3	823.2	766.8	774.7	709.0	723.6
3-ethylpentan-3-ol	825.4	837.7	768.8	791.2	710.1	741.0
[C ₄ mim][NTf ₂]	1438.9	1434.9	1395.0	1387.9	1350.5	1342.2
		Equimolar	mixtures wit	h [C4mim][NTf ₂]	
heptan-1-ol	1236.3	-	1190.0	-	1144.4	-
heptan-2-ol	1239.8	-	1192.3	-	1146.1	-
heptan-3-ol	1240.5	-	1192.6	-	1146.9	-
2,2-dimethylpentan-1-ol	1247.6	-	1200.8	-	1155.6	-
2,4-dimethylpentan-3-ol	1248.5	-	1201.0	-	1155.3	-
3-ethylpentan-3-ol	1251.1	-	1204.0	-	1157.9	-

^a Reference experimental data were obtained as averages of mutually consistent literature data, see Figs S1-S7.

^b Uncertainties related to MD sampling are below 1.0 kg m⁻³.

^c Data extrapolated over more than 40 K.

Fig. S1 Calculated liquid-phase densities of the pure alcohols (left) and their equimolar mixtures with $[C_4mim][NTf_2]$ (right) at 300 K (blue), 350 K (purple), and 400 K (red). Abbreviations of the chemical names of individual alcohols: heptan-1-ol (H₁), heptan-2-ol (H₂), heptan-3-ol (H₃), 2,2-dimethylpentan-1-ol (D₁), 2,4-dimethylpentan-3-ol (D₃), and 3-ethylpentan-3-ol (E₃).

Fig. S2 Comparison of experimental density data sets⁴⁻¹⁶ for $[C_4mim][NTf_2]$ that were assessed mutually consistent, and thus selected for the evaluation of the reference density (zero level at right).

Fig. S3 Comparison of experimental density data sets¹⁷⁻³² for heptan-1-ol that were assessed mutually consistent, and thus selected for the evaluation of the reference density (zero level at right).

Fig. S4 Comparison of experimental density data sets³³⁻⁴⁴ for heptan-2-ol that were assessed mutually consistent, and thus selected for the evaluation of the reference density (zero level at right).

Fig. S5 Comparison of experimental density data sets^{42, 43, 45-47} for heptan-3-ol that were assessed mutually consistent, and thus selected for the evaluation of the reference density (zero level at right).

Fig. S6 Experimental density data⁴⁸ for 2,2-dimethylpentan-1-ol.

Fig. S7 Comparison of experimental density data sets^{40, 45, 46, 49, 50} for 2,4-dimethylpentan-3-ol that were assessed mutually consistent, and thus selected for the evaluation of the reference density (zero level at right).

Fig. S8 Comparison of experimental density data sets⁵¹⁻⁵³ for 3-ethylpentan-3-ol that were assessed mutually consistent, and thus selected for the evaluation of the reference density (zero level at right).

Fig. S9 The closest cation – anion interaction contacts of the cationic C_R and anionic O_B atom types in pure bulk [C₄mim][NTf₂] and its equimolar mixtures with individual alcohols, all at 350 K. Region of the first peak is given in detail.

Fig. S10 The closest cation – anion interaction contacts of the cationic C_R and anionic O_B atom types at 350 K. Left – radial distribution functions g(r), Right – integral coordination numbers n(r) as functions of the atomic distance. Solid and dashed lines stand for results for [C₄mim][NTf₂] and [C₈mim][NTf₂], respectively.

Fig. S11 The closest interaction contacts of the O_H and H_O atom types defining the structure of hydrogen bonds between the hydroxyl groups of alcohol molecules. Left – radial distribution functions, Right – integral coordination numbers as functions of the atomic distance. Solid lines – pure alcohol, Dashed lines – equimolar mixture alcohol+[C₈mim][NTf₂], Dotted lines – equimolar mixture alcohol+[C₄mim][NTf₂].

Fig. S12 The closest interaction contacts of the H_0 and O_B atom types defining the structure of hydrogen bonds between the hydroxyl groups of alcohol molecules and the [NTf₂] anion. Left – radial distribution functions, Right – integral coordination numbers as functions of the atomic distance. Solid and dashed lines stand for results for [C₄mim][NTf₂] and [C₈mim][NTf₂], respectively.

Fig. S13 The closest interaction contacts of the O_H and C_R atom types defining the structure of hydrogen bonds between the hydroxyl groups of alcohol molecules and cation of the ILs. Left – radial distribution functions, Right – integral coordination numbers as functions of the atomic distance. Solid and dashed lines stand for results for [C₄mim][NTf₂] and [C₈mim][NTf₂], respectively.

Fig. S14 Spatial distribution functions of the hydroxyl hydrogen atoms around the $[NTf_2]$ anions (isosurfaces represent the SDF value 2.5) and of the hydroxyl oxygen atoms around the $[C_4mim]$ cations (isosurfaces represent the SDF value 5.0). Situation for equimolar mixtures of $[C_4mim][NTf_2]$ with heptan-1-ol, and 3-ethylpentan-3-ol are depicted in green and red, respectively.

Table S3. Calculated coordination numbers $(n_{\text{O-H}})$ representing the average number of hydrogen	n-
bonded hydrogen atoms (from alcohol hydroxyl, Ho) around an oxygen atom in the first solvation	n
shell in bulk liquid. Radii of the first solvation shell (R _{O-H} , in Å) given for comparison	

I		(0		
	300 K	350 K	400 K	300 K	350 K	400 K
		no-H			$R_{ m O-H}$	
		Pure comp	ound			
heptan-1-ol	0.917	0.785	0.621	2.63	2.67	2.71
heptan-2-ol	0.873	0.697	0.511	2.64	2.67	2.69
heptan-3-ol	0.814	0.594	0.432	2.64	2.67	2.77
2,2-dimethylpentan-1-ol	0.731	0.555	0.416	2.67	2.73	2.78
2,4-dimethylpentan-3-ol	0.588	0.471	0.298	2.68	2.94	2.88
3-ethylpentan-3-ol	0.577	0.367	0.266	2.54	2.64	2.81

Equimolar mixtures with [C4mim][NTf2], coordination of alcohol oxygen OH									
heptan-1-ol	0.307	0.243	0.185	2.67	2.68	2.73			
heptan-2-ol	0.255	0.201	0.151	2.68	2.71	2.76			
heptan-3-ol	0.245	0.178	0.123	2.72	2.73	2.73			
2,2-dimethylpentan-1-ol	0.189	0.145	0.112	2.73	2.77	2.82			
2,4-dimethylpentan-3-ol	0.136	0.095	0.074	2.82	2.83	2.73			
3-ethylpentan-3-ol	0.092	0.071	0.058	2.77	2.78	2.82			
Equimolar mixture	es with [C4	mim][NTf ₂]	, coordinatio	on of [NTf2]] oxygen O	В			
heptan-1-ol	0.162	0.159	0.159	3.02	3.09	3.23			
heptan-2-ol	0.166	0.156	0.147	3.07	3.17	3.24			
heptan-3-ol	0.153	0.144	0.135	3.14	3.22	3.29			
2,2-dimethylpentan-1-ol	0.153	0.151	0.132	3.18	3.37	3.33			
2,4-dimethylpentan-3-ol	0.146	0.136	0.117	3.22	3.37	3.41			
3-ethylpentan-3-ol	0.162	0.137	0.118	3.21	3.23	3.33			

Fig. S15 The closest interaction contacts of the C_T (terminal carbon site of the longer alkyl side-chain of the cations) and C_Z (terminal carbon atoms of the alkyl chains of alcohols) atom types at 350 K. Data are compared for equimolar mixtures of heptan-1-ol (H₁) or 3-ethylpentan-3-ol (H₃) with $[C_4mim][NTf_2]$ or $[C_8mim][NTf_2]$.

anneared anners.							
	d(O…H−O), Å ª	α(OH–O), deg. ^a	$E_{\rm int}{}^{\rm b}$	$E_{\rm elec}{}^{\rm b}$	$E_{\rm exch}{}^{\rm b}$	$E_{\rm indu}{}^{\rm b}$	E_{disp} b
		alcohol-alcohol dimer	`S				
heptan-1-ol	1.88	174.4	-39.2	-54.0	75.0	-16.4	-43.8
heptan-2-ol	1.89	164.7	-35.2	-46.5	65.1	-14.6	-39.2
heptan-3-ol	1.86	175.0	-37.4	-53.6	70.4	-16.8	-37.4
2,2-dimethylpentan-1-ol	1.85	170.5	-31.3	-50.1	57.5	-15.2	-23.4
2,4-dimethylpentan-3-ol	1.88	172.2	-35.6	-47.8	60.6	-15.2	-33.2
3-ethylpentan-3-ol	1.86	176.1	-34.0	-51.8	60.4	-16.2	-26.4
		alcohol-[NTf2] cluster	S				
heptan-1-ol	1.98	165.2	-60.0	-57.7	57.8	-22.2	-37.9
heptan-2-ol	1.92	173.3	-49.2	-53.8	59.4	-20.8	-34.0
heptan-3-ol	1.93	171.3	-53.9	-57.7	66.3	-25.6	-36.9
2,2-dimethylpentan-1-ol	1.90	169.6	-57.5	-59.2	63.8	-24.6	-37.4
2,4-dimethylpentan-3-ol	1.91	171.1	-52.2	-57.0	64.2	-22.8	-36.7
3-ethylpentan-3-ol	1.90	175.5	-47.5	-51.3	60.9	-21.8	-35.3

Table S4. Calculated structure and interaction energies (kJ mol⁻¹) of vapor-phase simulationannealed dimers.

^a Simulation-annealed clusters further reoptimized with B3LYP-D3/aug-cc-pVDZ.

^b Interaction energies and its decomposition at the sSAPT0/jun-cc-pVDZ level of theory.

Fig. S16 Geometries of the simulation-annealed vapor-phase clusters of alcohol-alcohol dimers (odd columns) and alcohol-[NTf2] clusters (even columns).

1	300 K	350 K	400 K	300 K	298.15 K
		$\Delta_{ m vap} H^{ m calc}$		$\Delta_{ m vap} H^{ m exp, b}$	$\Delta_{ m vap}H^{ m lit, c}$
	Pure compour	nd			
heptan-1-ol	61.0	52.7	44.5	66.3 ± 0.4	67.0 ± 2.0
heptan-2-ol	57.4	48.0	39.1	63.3 ± 0.4	62.1 ± 0.4
heptan-3-ol	59.0	48.0	39.0	62.1 ± 0.4	$63.0^{d} \pm 2.0$
2,2-dimethylpentan-1-ol	55.6	47.6	40.5		
2,4-dimethylpentan-3-ol	55.0	45.7	38.8	56.3 ± 0.4	$58.5^{e}\pm2.0$
3-ethylpentan-3-ol	48.5	39.9	33.6	56.8 ± 0.4	57.3 ± 0.2
[C ₄ mim][NTf ₂]	175.2	167.5	160.6		
Equimolar 1	mixtures with [C ₄ mim][NTf ₂]			
heptan-1-ol	116.3	108.8	102.4		
heptan-2-ol	114.7	107.2	100.4		
heptan-3-ol	115.5	107.6	101.0		
2,2-dimethylpentan-1-ol	115.2	108.1	101.7		
2,4-dimethylpentan-3-ol	115.6	107.9	101.5		
3-ethylpentan-3-ol	112.8	105.5	99.3		

Table S5.	Calculated	vaporization	enthalpies	(kJ mol ⁻¹	¹)a
1 4010 001	Carearacea	, apointation	enteriorpres	110 11101	,

^a Uncertainties related to MD sampling are below 1.0 kJ mol⁻¹.
^b Unpublished data by Štejfa and Fulem.⁵⁴
^c Literature data from the NIST database (webbook.nist.gov).
^d Interpolated from available data at different temperatures.
^e Extrapolated from available data at different temperatures (extrapolation by 24 K).

Fig. S17 Calculated self-diffusivities of the pure alcohols (left) and their equimolar mixtures with $[C_4mim][NTf_2]$ (right) at 300 K (blue), 350 K (purple), and 400 K (red). Chemical names of individual alcohols are abbreviated as follows: heptan-1-ol (H₁), heptan-2-ol (H₂), heptan-3-ol (H₃), 2,2-dimethylpentan-1-ol (D₁), 2,4-dimethylpentan-3-ol (D₃), and 3-ethylpentan-3-ol (E₃).

Cultured bell allfubioli duta it			5)
	300 K	350 K	400 K
	Pure compou	nd	
heptan-1-ol	0.157	0.984	2.890
heptan-2-ol	0.157	1.125	3.203
heptan-3-ol	0.175	1.522	3.849
2,2-dimethylpentan-1-ol	0.226	1.203	2.833
2,4-dimethylpentan-3-ol	0.447	1.945	4.079
3-ethylpentan-3-ol	0.475	1.828	4.570
Equimolar m	nixtures with [C ₄ mim][NTf ₂]	
heptan-1-ol	0.027	0.170	0.546
heptan-2-ol	0.023	0.207	0.638
heptan-3-ol	0.031	0.138	0.462
2,2-dimethylpentan-1-ol	0.021	0.126	0.425
2,4-dimethylpentan-3-ol	0.025	0.164	0.504
3-ethylpentan-3-ol	0.021	0.138	0.462

Table S6. Calculated self-diffusion data for alcohol molecules $(10^{-9} \text{ m}^2 \text{ s}^{-1})^a$

^a Uncertainties related to MD sampling are below 10^{-11} m² s⁻¹.

<u>s Luijipe</u>	mun 5 of utp	(100 ±	J) M u					
<i>T /</i> K	c_p / J·K ⁻¹ ·g ⁻¹	$\delta_{rel}{}^{c}$	<i>T /</i> K	c_p / J·K ⁻¹ ·g ⁻¹	$\delta_{rel}{}^{c}$	<i>T /</i> K	c_p / J·K ⁻¹ ·g ⁻¹	$\delta_r{}^c$
	heptan-1-ol			heptan-3-ol		3-е	thylpentan-3-	ol
349.7	2.834	0.08	349.6	3.118	-0.24	349.8	3.151	0.38
345.0	2.794	0.16	345.0	3.091	-0.08	345.0	3.169	0.20
340.0	2.755	0.35	340.0	3.066	0.27	340.0	3.193	0.30
335.0	2.709	0.33	335.0	3.033	0.40	335.0	3.199	0.00
330.0	2.657	0.06	330.0	2.986	0.13	330.0	3.207	-0.05
325.0	2.604	-0.24	325.0	2.934	-0.23	325.0	3.208	-0.15
320.0	2.557	-0.31	320.0	2.886	-0.42	320.0	3.217	0.22
315.0	2.517	-0.11	315.0	2.842	-0.44	315.0	3.223	0.74
310.0	2.473	-0.08	310.0	2.796	-0.43	310.0	3.199	0.57
305.0	2.435	0.19	305.0	2.749	-0.41	305.0	3.159	0.20
300.0	2.384	-0.04	300.0	2.702	-0.35	300.0	3.116	0.01
295.0	2.346	0.29	295.0	2.662	0.09	295.0	3.071	0.13
291.1	2.319	0.65	291.0	2.631	0.51	291.0	3.022	0.01

Table S7. Experimental Liquid Phase Heat Capacities c_p of Heptan-1-ol, Heptan-3-ol, and 3-Ethylpentan-3-ol at $p = (100 \pm 5) \text{ kPa}^{a,b}$

^a Standard uncertainty *u* is u(T) = 0.05 K, and the combined expanded uncertainty of the heat capacity is $U_c(C_{p,m}) = 0.01C_{p,m}$ (0.95 level of confidence).

^b Values are reported with one digit more than is justified by the experimental uncertainty to avoid round-off errors in calculations based on these results.

 $^{\circ} \delta_{\rm r} = 100 \times (c_p - c_p^{\rm calc}) / c_p^{\rm calc}$, where $c_p^{\rm calc}$ is heat capacity calculated from eqn (S1) with parameters from Table S9.

Table S8. Experimental Liquid Phase Heat Capacities c_p of [C₄mim][NTf₂], [C₆mim][NTf₂], and [C₈mim][NTf₂] at $p = (100 \pm 5)$ kPa^{a,b}

<i>T /</i> K	$c_p / J \cdot K^{-1} \cdot g^{-1}$	${\delta_{rel}}^{c}$	<i>T /</i> K	c_p / J·K ⁻¹ ·g ⁻¹	${\delta_{rel}}^{c}$	<i>T /</i> K	$c_p / J \cdot K^{-1} \cdot g^{-1}$	$\delta_r{}^c$
[(C ₄ mim][NTf ₂]		[(C ₆ mim][NTf ₂]		[(C ₈ mim][NTf ₂]	
352.6	1.428	-0.07	352.6	1.545	0.15	352.7	1.545	-0.09
350.0	1.424	-0.15	350.0	1.540	0.11	350.0	1.541	-0.10
345.0	1.416	-0.23	345.0	1.530	0.08	345.0	1.532	-0.19
340.0	1.411	-0.08	340.0	1.520	0.01	340.0	1.525	-0.09
335.0	1.406	0.04	335.0	1.510	-0.07	335.0	1.519	0.04
330.0	1.398	-0.01	330.0	1.502	0.01	330.0	1.512	0.07
325.0	1.389	-0.10	325.0	1.494	0.06	325.0	1.505	0.16
320.0	1.381	-0.18	320.0	1.486	0.12	320.0	1.496	0.07
315.0	1.376	-0.03	315.0	1.479	0.15	315.0	1.483	-0.31
310.0	1.373	0.32	310.0	1.470	0.16	310.0	1.471	-0.60
305.0	1.368	0.49	305.0	1.461	0.09	305.0	1.472	-0.04
300.0	1.355	0.13	300.0	1.452	-0.01	300.0	1.466	0.06
295.0	1.348	0.16	295.0	1.444	-0.03	295.0	1.458	0.02
290.9	1.345	0.41	291.0	1.440	0.13	290.9	1.454	0.17

^a Standard uncertainty *u* is u(T) = 0.05 K, and the combined expanded uncertainty of the heat capacity is $U_c(C_{p,m}) = 0.01C_{p,m}$ (0.95 level of confidence).

^b Values are reported with one digit more than is justified by the experimental uncertainty to avoid round-off errors in calculations based on these results.

^c $\delta_{\rm r} = 100 \times (c_p - c_p^{\rm calc}) / c_p^{\rm calc}$, where $c_p^{\rm calc}$ is heat capacity calculated from eqn (S1) with parameters from Table S9.

Experimental specific heat capacities obtained in this work have been described by a polynomial function (S1). Parameters for pure compounds are listed in Table S9, parameters for equimollar mixtures are listed in Table S11 and parameters for excess specific heat capacities of equimollar mixtures are listed in Table S12.

$$c_p = \sum_{i=0}^{n} A_{i+1} \left(\frac{T}{100 \text{ K}} \right)^i.$$
(S1)

Table S9. Parameters of eqn (S1) for liquid phase heat capacities of pure compounds in $J \cdot K^{-1} \cdot g^{-1}$

) F				<u>, </u>
Compound	$A_1 / \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{g}^{-1}$	$A_2 / J \cdot K^{-1} \cdot g^{-1}$	$A_3 / \mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{g}^{-1}$	$A_4 / J \cdot K^{-1} \cdot g^{-1}$	T_{\min} - T_{\max}/K	s_r^a
heptan-1-ol	-4.08944E-1	9.58706E-1	-9.15273E-3	-	291-358	0.216
heptan-3-ol	-3.45423E0	3.10334E0	-3.49410E-1	-	291-353	0.272
3-ethylpentan-3-ol	-4.45470E1	3.96470E1	-1.08286E1	9.69594E-1	276-355	0.177
[C ₄ mim][NTf ₂]	7.40600E-1	2.56163E-1	-1.72657E-2	-	276-358	0.175
$[C_6 mim][NTf_2]$	1.26674E0	-3.19584E-2	3.12620E-2	-	291-350	0.282
[C ₈ mim][NTf ₂]	1.11923E0	8.03016E-2	1.16165E-2	-	291-353	0.165
$\left(\frac{n}{2}\right)$		$(1)^{1/2}$				

^a $s_{\rm r} = 100 \left\{ \sum_{i=1}^{\infty} \left[\left(c_p - c_p^{\rm calc} \right) / c_p^{\rm calc} \right]_i^2 / (n-m) \right\}$, where *n* is the number of fitted data points, and *m* is

the number of independent adjustable parameters.

Reference	N^{b}	$(T_{\min}-T_{\max})/K$	$u_{\rm r}(C_{\rm pm})/\%^{\rm c}$	mole	method
				fraction	
				purity	
heptan-1-ol				- ·	
Parks et al. ⁵⁵	7	240.03 - 299.99	1.0	0.997	Aneroid
Calvo et al. ⁵⁶	1	298.15	nosp.	>0.99	flow
van Miltenburg et al. ⁵⁷	78	241.56 - 369.74	0.2	0.999	Adiabatic
Serra et al. ⁵⁸	50	261.15 - 380.00	1.0	0.996	Tian-Calvet
This Work	13	291.07 - 349.71	1.0	0.999	Tian-Calvet
heptan-3-ol					
Serra et al. ⁵⁸	51	261.41 - 382.85	1.0	0.998	Tian-Calvet
This Work	13	290.95 - 349.65	1.0	0.996	Tian-Calvet
3-ethylpentan-3-ol					
Cáceres-Alonso et al. ⁵¹	1	298.15	nosp.	>0.98	flow
Cerdeiriña et al. ⁵⁹	60	278.15 - 337.15	0.2	>0.98	Tian-Calvet
Serra et al. ⁵⁸	42	262.09 - 357.94	1.0	0.992	Tian-Calvet
This Work	13	291.05 - 349.84	1.0	0.993	Tian-Calvet
[C ₄ mim][NTf ₂]					
Holbrey et al. ⁶⁰	17	293.15 - 453.15	nosp.	0.98	MDSC
Fredlake et al. ⁶¹	2	298.15 - 323.15	3.6	>0.99	DSC
Troncoso et al. ⁶²	20	283.15 - 328.15	0.2 J/mol/K	>0.998	Tian-Calvet
Zhang and Reddy ⁶³	S	273.15 - 473.15	nosp.	nosp.	DSC
Shimizu et al. ⁶⁴	12	250 - 300	0.2	0.997	Adiabatic
Blokhin et al. ⁶⁵	149	183.41 - 367.49	0.4	0.985	Adiabatic

Table S10. Overview of the literature liquid phase heat capacities for pure compounds studied in this work^a

Reference	N ^b	$(T_{\min}-T_{\max})/K$	$u_{\rm r}(C_{p{\rm m}})/\%^{\rm c}$	mole fraction purity	method	
Ge et al. ⁶⁶	14	293 - 358	5.0	nosp.	DSC	
Nieto de Castro et al. ⁶⁷	12	308.16 - 363.18	1.5	nosp.	DSC	
Rocha et al. ⁶⁸	1	298.15	0.3	>0.99	drop	
Gómez et al. ⁶⁹	41	293.15 - 333.15	5.0	>0.98	DSC	
Makino et al. ⁷⁰	S	293.15 - 363.15	0.2	>0.997	Tian-Calvet	
This Work	14	290.94 - 352.58	1.0	>0.990	Tian-Calvet	
$[C_6 mim][NTf_2]$						
Crosthwaite et al. ⁷¹	2	298 - 323	5.0	nosp.	DSC	
Archer ⁷²	164	196 - 370	1.1	0.995	DSC	
Blokhin et al. ⁷³	176	188.06 - 370	0.4	>0.995	Adiabatic	
Diedrichs and Ghmehling ⁷⁴	61	318.17 - 425.15	5.0	>0.999	999 DSC	
Diedrichs and Ghmehling ⁷⁴					MDSC	
Diedrichs and Ghmehling ⁷⁴					Tian-Calvet	
Shimizu et al. ⁷⁵	6	272.1 - 310	0.5 J/mol/K	0.9983	Adiabatic	
Ge et al. ⁶⁶	14	293 - 358	5.0	nosp.	DSC	
Bochmann and Hefter ⁷⁶	21	325.02 - 564.85	0.3	nosp.	Tian-Calvet	
Hughes et al. ⁷⁷	15	302.86 - 372.64	3.0	nosp.	Tian-Calvet	
Rocha et al. ⁶⁸	1	298.15	0.3	>0.99	drop	
Gómez et al. ⁶⁹	41	293.15 - 333.15	5.0	>0.99	DSC	
This Work	14	290.99 - 352.60	1.0	>0.990	Tian-Calvet	
$[C_8 mim][NTf_2]$						
Crosthwaite et al. ⁷¹	2	298 - 323	5.0	nosp.	DSC	
Paulechka et al. ⁷⁸	86	187.58 - 367.13	0.4	0.986	Adiabatic	
Ge et al. ⁶⁶	14	293 - 358	0.4	nosp.	DSC	
Bochmann and Hefter ⁷⁶	21	325.02 - 564.84	0.3	nosp.	Tian-Calvet	
Hughes et al. ⁷⁷	18	281.99 - 372.66	3.0	nosp.	Tian-Calvet	
Chatel et al. ⁷⁹	13	265.02 - 385.03	3.0	nosp.	DSC	
Rocha et al. ⁶⁸	1	298.15	0.3	>0.99	drop	
This Work	14	290.94-352.73	1.0	>0.990	Tian-Calvet	

^a The data from references written in bold have been used as C_{pm}^{ref} in Fig. S17.

^bN stands for number of data points.

^c $u_r(C_{pm})$ stands for relative uncertainty in heat capacity as stated by the authors.

All available experimental heat capacities of pure compounds are compared in Fig. S17. Where possible, heat capacity values obtained by adiabatic calorimetry in a wide temperature range have been selected as reference. If no such data were available (in the case of heptan-3-ol and 3-ethylpentan-3-ol), our data have been used instead. In the case of $[C_6mim][NTf_2]$, our data deviates by up to 4% from Blokhin et al.⁷³ However, data by other authors (Diedrichs and Ghmehling⁷⁴, Archer⁷², Hughes et al.⁷⁷ and Ge et al.⁶⁶) are in a better agreement with our data. We believe this disparity might be caused by the sample rather than the experimental method. Excess heat capacities are not influenced by differences between heat capacities of pure compounds obtained in this work and in the literature.

Fig. S18 Relative deviations $100(C_{pm}^{exp} - C_{pm}^{ref})/C_{pm}^{ref}$ of individual experimental heat capacities C_{pm}^{exp} from the reference C_{pm}^{ref} written in bold in Table 2. Red \blacksquare , This Work; Blue \bigcirc , van Miltenburg et al.⁵⁷; Dark green \blacktriangle , Parks et al.⁵⁵; Black \bigstar , Calvo et al.⁵⁶; Brown \bigstar , Cáceres-Alonso et al.⁵¹; Dark green \divideontimes ; Cerdeiriña et al.⁵⁹, Orange \diamondsuit , Blokhin and coworkers^{65, 73, 80}; Violet \blacktriangle , Troncoso et al.⁶²; Black \diamondsuit , Makino et al.⁷⁰; Cyan \checkmark , Ge et al.⁶⁶; Cyan \bigcirc , Nieto de Castro et al.⁶⁷; Green \blacktriangledown , Shimizu et al.^{64, 75}; Dark green \blacksquare , Gómez et al.⁶⁹; Magenta \bigstar , Rocha et al.⁶⁸; Brown \bigoplus , Diedrichs and Ghmehling⁷⁴; Grey \bigstar , Archer⁸¹; Olive \bigcirc , Bochmann and Hefter⁷⁶; Blue \divideontimes , Hughes et al.⁷⁷; Black \ltimes , Crosthwaite et al.⁷¹; Olive \diamondsuit , Serra et al.⁵⁸ Other data from Table S10 are not displayed, because they are out of scale.

Mixture ^a	A_1	A_2	A_3	$T_{\min}-T_{\max}/K$	s_r^{b}
C_4H_1	1.59974E0	3.84473E-2	-	348-358	0.033
C_4H_3	2.84581E-2	8.71694E-1	-1.05382E-1	291-353	0.125
C_4E_3	1.43363E0	-2.39490E-3	2.32332E-2	296-354	0.058
C_6H_1	1.67896E0	-1.25001E-1	4.40540E-2	325-351	0.033
C_6H_3	1.72311E0	-1.27203E-1	4.45707E-2	291-349	0.128
C_6E_3	2.78389E0	-7.81168E-1	1.44693E-1	291-349	0.276
C_8H_1	1.79567E0	-2.18248E-1	6.31760E-2	291-353	0.379
C_8H_3	1.88228E0	-2.33465E-1	6.10361E-2	291-353	0.214
C_8E_3	1.96909E0	-2.69323E-1	6.50696E-2	291-345	0.191

Table S11. Parameters of eqn (S1) for liquid phase heat capacities of equimolar mixtures in J·K⁻¹·g⁻

^a Abbreviations described in Table S1.

^b $s_r = 100 \left\{ \sum_{i=1}^{n} \left[\left(c_p - c_p^{\text{calc}} \right) / c_p^{\text{calc}} \right]_i^2 / (n-m) \right\}^{1/2}$, where *n* is the number of fitted data points, and

m is the number of independent adjustable parameters.

Fig. S19 Heat capacities of mixtures studied in this work with molar fraction $x_{IL} = 0.50 \pm 0.01$ (listed in Table S1). a) ideal mixture based on selected data from Table S10, b) real mixture calculated by the means of eqn (S1) with parameters from table S11.

 					0		
Mixture ^a	A_1	A_2	A_3	A_4	$T_{\min}-T_{\max}/K$		
C_4H_1	4.32435E0	-2.22572E0	2.82339E-1	-	350-358		
C_4H_3	4.59952E-1	-1.74780E-1	1.15085E-2	-	290-352		
C_4E_3	2.25532E1	-1.99622E1	5.82796E0	-5.63603E-1	300-354		
C_6H_1	1.48377E0	-7.36678E-1	8.77769E-2	-	326-352		
C_6H_3	9.04018E-1	-4.19438E-1	4.17447E-2	-	290-350		
C_6E_3	1.36784E1	-1.14955E1	3.15942E0	-2.84438E-1	290-350		
C_8H_1	1.12601E0	-5.72756E-1	7.15642E-2	-	290-352		
C_8H_3	2.04810E0	-1.14896E0	1.57024E-1	-	290-352		
C_8E_3	1.64132E1	-1.43072E1	4.10373E0	-3.88908E-1	290-352		

Table S12. Parameters of eqn (S1) for excess heat capacities of equimolar mixtures in J·K⁻¹·g⁻¹

^a Abbreviations described in Table S1

Fig. S20 Heat capacity of Alcohol-rich mixture with a drop of IL. $x_{IL} < 0.01$.

Fig. S21 Heat capacity of IL-rich mixture with a drop of alcohol. $x_{IL} > 0.9$.

References to the SI

- 1. V. R. Vale, B. Rathke, S. Will and W. Schröer, J. Chem. Eng. Data, 2011, 56, 4829-4839.
- 2. P. B. P. Serra, X. Shao, A. Granadero, M. A. A. Rocha, J. Kiefer, W. Schröer, K. Růžička, M. Fulem and B. Rathke, *J. Chem. Eng. Data*, 2019, **64**, 2395-2405.
- 3. V. R. Vale, B. Rathke, S. Will and W. Schröer, J. Chem. Eng. Data, 2011, 56, 1330-1340.
- 4. M. Geppert-Rybczyńska, A. Heintz, J. K. Lehmann and A. Golus, *J. Chem. Eng. Data*, 2010, **55**, 4114-4120.
- 5. M. Zorębski, E. Zorębski, M. Dzida, J. Skowronek, S. Jężak, P. Goodrich and J. Jacquemin, *J. Phys. Chem. B*, 2016, **120**, 3569-3581.
- 6. M. Součková, J. Klomfar and J. Pátek, J. Chem. Thermodyn., 2014, 77, 31-39.
- 7. T. Song, M. J. Lubben and J. F. Brennecke, *Fluid Phase Equilib.*, 2020, **504**, 112334.
- 8. J. Skowronek, M. Dzida, E. Zorebski, M. Chorążewski, S. Jezak, M. Żarska, M. Zorębski, P. Goodrich and J. Jacquemin, *J. Chem. Eng. Data*, 2016, **61**, 3794-3805.
- 9. G. Prasad, K. M. Reddy, R. Padamasuvarna, T. M. Mohan, T. V. Krishna and S. G. Rao, *J. Solution Chem.*, 2018, **47**, 1980-2006.
- 10. A. Pal, M. Saini and B. Kumar, *Fluid Phase Equilib.*, 2016, **411**, 66-73.
- 11. N. I. Malek and S. P. Ijardar, J. Chem. Thermodyn., 2016, 93, 75-85.
- 12. M. Kanakubo and K. R. Harris, J. Chem. Eng. Data, 2015, 60, 1408-1418.
- 13. R. Gomes de Azevedo, J. M. S. S. Esperança, J. Szydlowski, Z. P. Visak, P. F. Pires, H. J. R. Guedes and L. P. N. Rebelo, *J. Chem. Thermodyn.*, 2005, **37**, 888-899.
- 14. H. F. D. Almeida, J. N. Canongia Lopes, L. P. N. Rebelo, J. A. P. Coutinho, M. G. Freire and I. M. Marrucho, *J. Chem. Eng. Data*, 2016, **61**, 2828-2843.
- 15. S. N. V. K. Aki, B. R. Mellein, E. M. Saurer and J. F. Brennecke, *J. Phys. Chem. B*, 2004, **108**, 20355-20365.
- 16. E. Zorębski, M. Geppert-Rybczyńska and M. Zorębski, *J. Phys. Chem. B*, 2013, **117**, 3867-3876.
- 17. V. Alonso, E. Calvo, R. Bravo, M. Pintos and A. Amigo, *J. Chem. Eng. Data*, 1994, **39**, 926-928.
- 18. S. K. Garg, T. S. Banipal and J. C. Ahluwalia, J. Chem. Eng. Data, 1993, 38, 227-230.
- 19. M. S. AlTuwaim, K. H. A. E. Alkhaldi, A. S. Al-Jimaz and A. A. Mohammad, *J.Chem. Thermodyn.*, 2012, **48**, 39-47.
- 20. U. Domańska and M. Królikowska, J. Chem. Eng. Data, 2010, 55, 2994-3004.
- 21. H. Kumar, B. Kumar, A. Kumar, T. Angmo and S. Yadav, *J. Chem. Eng. Data*, 2009, **54**, 165-167.
- 22. A. Pal and R. Gaba, J. Chem. Thermodyn., 2008, 40, 750-758.
- 23. Y. Uosaki, T. Motoki, T. Hamaguchi and T. Moriyoshi, *J.Chem. Thermodyn.*, 2007, **39**, 810-816.
- 24. A. S. Al-Jimaz, J. A. Al-Kandary and A.-H. M. Abdul-Latif, *J. Chem. Eng. Data*, 2007, **52**, 206-214.
- 25. A. Pal and H. Kumar, J. Chem. Thermodyn., 2004, 36, 173-182.
- 26. Å. Piñeiro, P. Brocos, A. Amigo, M. Pintos and R. Bravo, *J. Solution Chem.*, 2002, **31**, 369-380.
- 27. N. V. Sastry and S. R. Patel, Int. J. Thermophys., 2000, 21, 1153-1174.
- 28. M. I. Aralaguppi, C. V. Jadar and T. M. Aminabhavi, *J. Chem. Eng. Data*, 1999, **44**, 216-221.
- 29. Z. Shan and A.-F. A. Asfour, *Fluid Phase Equilib.*, 1998, **143**, 253-262.
- 30. Y. Uosaki, T. Hamaguchi and T. Moriyoshi, *Fluid Phase Equilib.*, 1997, 136, 299-306.
- 31. N. V. Sastry and M. M. Raj, J. Chem. Eng. Data, 1996, 41, 612-618.
- 32. J. Ortega, J. Chem. Eng. Data, 1985, 30, 462-465.
- 33. M. Almasi and B. Sarkoohaki, J. Chem. Eng. Data, 2012, 57, 309-316.

- 34. M. Almasi and H. Iloukhani, J. Chem. Eng. Data, 2010, 55, 1416-1420.
- 35. H. Iloukhani and M. Almasi, *Thermochim. Acta*, 2009, **495**, 139-148.
- 36. H. Iloukhani, B. Samiey and M. A. Moghaddasi, J. Chem. Thermodyn., 2006, 38, 190-200.
- 37. H. Iloukhani and J. B. Parsa, J. Solution Chem., 2001, **30**, 425-433.
- 38. H. Iloukhani, J. B. Parsa and A. A. Saboury, J. Chem. Eng. Data, 2000, 45, 1016-1018.
- 39. P. Pomerantz, J. Res. Natl. Bur. Stand., 1952, 48, 76-81.
- 40. A. Weissler, J. Am. Chem. Soc., 1948, 70, 1634-1640.
- 41. L. M. Ellis and E. E. Reid, J. Am. Chem. Soc., 1932, 54, 1674-1687.
- 42. J. Errera and M. L. Sherrill, J. Am. Chem. Soc., 1930, 52, 1993-1997.
- 43. M. L. Sherrill, J. Am. Chem. Soc., 1930, 52, 1982-1992.
- 44. T. Journal of the Chemical Society, Robert Howson and J. Kenyon, J. Chem. Soc., Trans., 1913, **103**, 1923-1959.
- 45. L. H. Thomas and R. Meatyard, J. Chem. Soc., 1963, 1986-1995.
- 46. H. Pichler, K. H. Ziesecke and B. Traeger, *Brennst.-Chem.*, 1950, **31**, 361.
- 47. R. M. Adams and C. A. VanderWerf, J. Am. Chem. Soc., 1950, 72, 4368-4373.
- 48. L. A. Shutikova, K. V. Puzitskii, V. G. Cherkaev and Y. T. Eidus, *Tr. Vses. Nauchno-Issled. Inst. Sint. Nat. Dushistykh Veshchestv*, 1965.
- 49. G. A. Razuvaev and Y. A. Ol'dekop, *Zh. Obshch. Khim.*, 1953, 23, 1173.
- 50. P. M. Ginnings and M. Hauser, J. Am. Chem. Soc., 1938, 60, 2581-2582.
- 51. M. Cáceres-Alonso, M. Costas, L. Andreoli-Ball and D. Patterson, *Can. J. Chem.*, 1988, **66**, 989-998.
- 52. J. Timmermans and M. Hennaut-Roland, J. Chim. Phys. Phys.-Chim. Biol., 1955, 52.
- 53. J. F. Eykman, *Natuurkd. Verh. Hollandsche Maatschappij Wet. Haarlem*, 1919, 8, 438-555.
 54. V. Štejfa and M. Fulem, unpublished data.
- 55. G. S. Parks, W. D. Kennedy, R. R. Gates, J. R. Mosley, G. E. Moore and M. L. Renquist, *J. Am. Chem. Soc.*, 1956, **78**, 56-59.
- 56. E. Calvo, P. Brocos, Á. Piñeiro, M. Pintos, A. Amigo, R. Bravo, A. H. Roux and G. Roux-Desgranges, J. Chem. Eng. Data, 1999, 44, 948-954.
- 57. J. C. van Miltenburg, H. Gabrielová and K. Růžička, *J. Chem. Eng. Data*, 2003, **48**, 1323-1331.
- 58. P. B. P. Serra, K. Růžička, M. Fulem, O. Vlk and I. Krakovský, *Fluid Phase Equilib.*, 2016, **423**, 43-54.
- 59. C. A. Cerdeiriña, J. Troncoso, D. González-Salgado, G. García-Miaja, G. O. Hernández-Segura, D. Bessières, M. Medeiros, L. Romaní and M. Costas, *J. Phys. Chem. B*, 2007, **111**, 1119-1128.
- 60. J. D. Holbrey, W. M. Reichert, R. G. Reddy and R. D. Rogers, in *Ionic Liquids as Green Solvents: Progress and Prospects*, eds. R. D. Rodgers and K. R. Seddon, Amer Chemical Soc, Washington2003, vol. 856, pp. 121-133.
- 61. C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki and J. F. Brennecke, *J. Chem. Eng. Data*, 2004, **49**, 954-964.
- 62. J. Troncoso, C. A. Cerdeiriña, Y. A. Sanmamed, L. Romaní and L. P. N. Rebelo, *J. Chem. Eng. Data*, 2006, **51**, 1856-1859.
- 63. M. Zhang and R. Reddy, *ECS Transactions*, 2019, **2**, 27-34.
- 64. S. Yoshitaka, O. Yoko, Y. Yasuhisa and S. Kazuya, Chem. Lett., 2007, 36, 1484-1485.
- 65. A. V. Blokhin, Y. U. Paulechka, A. A. Strechan and G. J. Kabo, *J. Phys. Chem. B*, 2008, **112**, 4357-4364.
- 66. R. Ge, C. Hardacre, J. Jacquemin, P. Nancarrow and D. W. Rooney, J. Chem. Eng. Data, 2008, 53, 2148-2153.
- 67. C. A. Nieto de Castro, E. Langa, A. L. Morais, M. L. M. Lopes, M. J. V. Lourenço, F. J. V. Santos, M. S. C. S. Santos, J. N. C. Lopes, H. I. M. Veiga, M. Macatrão, J. M. S. S.

Esperança, C. S. Marques, L. P. N. Rebelo and C. A. M. Afonso, *Fluid Phase Equilib.*, 2010, **294**, 157-179.

- 68. M. A. A. Rocha, M. Bastos, J. A. P. Coutinho and L. M. N. B. F. Santos, *J.Chem. Thermodyn.*, 2012, **53**, 140-143.
- 69. E. Gómez, N. Calvar, Á. Domínguez and E. A. Macedo, *Ind. Eng. Chem. Res.*, 2013, **52**, 2103-2110.
- 70. T. Makino, M. Kanakubo, Y. Masuda and H. Mukaiyama, *J. Solution Chem.*, 2014, **43**, 1601-1613.
- 71. J. M. Crosthwaite, M. J. Muldoon, J. K. Dixon, J. L. Anderson and J. F. Brennecke, *J. Chem. Thermodyn.*, 2005, **37**, 559-568.
- 72. D. G. Archer, *National Institute of Standards and Technology, Gaithersburg, MD*, 2006, 6645.
- 73. A. V. Blokhin, Y. U. Paulechka and G. J. Kabo, J. Chem. Eng. Data, 2006, 51, 1377-1388.
- 74. A. Diedrichs and J. Gmehling, *Fluid Phase Equilib.*, 2006, **244**, 68-77.
- 75. Y. Shimizu, Y. Ohte, Y. Yamamura, K. Saito and T. Atake, *J. Phys. Chem. B*, 2006, **110**, 13970-13975.
- 76. S. Bochmann and G. Hefter, J. Chem. Eng. Data, 2010, 55, 1808-1813.
- 77. T. J. Hughes, T. Syed, B. F. Graham, K. N. Marsh and E. F. May, *J. Chem. Eng. Data*, 2011, **56**, 2153-2159.
- 78. Y. U. Paulechka, G. J. Kabo, A. V. Blokhin, A. S. Shaplov, E. I. Lozinskaya and Y. S. Vygodskii, *J.Chem. Thermodyn.*, 2007, **39**, 158-166.
- 79. G. Chatel, L. Leclerc, E. Naffrechoux, C. Bas, N. Kardos, C. Goux-Henry, B. Andrioletti and M. Draye, *J. Chem. Eng. Data*, 2012, **57**, 3385-3390.
- Y. U. Paulechka, A. V. Blokhin, G. J. Kabo and A. A. Strechan, *J.Chem. Thermodyn.*, 2007, 39, 866-877.
- 81. D. G. Archer, *Thermodynamic properties of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide*, Report NIST IR 6645, National Institute of Standards and Technology, Gaithersburg, MD, 2006.