Supplementary material

Threshold photoelectron spectroscopy of 9-methyladenine: theory and experiment

K. Laamiri, G. A. Garcia, L. Nahon, A. Ben Houria, R. Feifel, and M. Hochlaf

Figure S1: PES spectrum of 9MA obtained for hv = 13.9 eV. We give also that of the m/z = 148 H loss fragment.

Figure S2: Outermost molecular orbitals of 9MA.

Figure S3: PBE0/auc-cc-pVDZ one dimensional cut of the potential energy surface of 9-methyladenine by rotating the methyl group along the N9-C3 bond. The black arrows locate the 9MA' and 9MA species.

Table S1: Total energies (in Hartree) and adiabatic ionization energies (AIE in eV) of 9-methyladenine (9MA) and of its conformer (9MA') and tautomers as computed at the PBE0/aug-cc-pVDZ level and (R)CCSD(T)-F12/aug-cc-pVDZ level of theory. ZPVE (in Hartree) corresponds to the zero-point vibrational energy (in Hartree) as computed at the anharmonic level of theory. The equilibrium geometries in Cartesian coordinates are given in Table S2.

Molecular species	NH2 N N N		H N N	N NH	N N	N H NH	H.	Z	N	Z Z Z Z Z	
	9MA	9MA'	9MA+	I1(1H)	I1(1H)+	I2(1H)	I2(1H) ⁺	I1(3H)	I1(3H) ⁺	I2(3H)	I2(3H)+
Method		Total energies (in Hartree)									
PBE0 / aug-cc-pVDZ (optg) ^(a)	-506.138191	-506.138150	-505.849182	-506.119026	-505.842185	-506.108655	-505.832716	-506.088016	-505.814529	-506.087799	-505.816232
ZPVE (a)	0.140330	0.140281	0.140783	0.141482	0.140527	0.140898	0.140072	0.140199	0.139360	0.140064	0.139410
(R)CCSD(T)-F12 / aug-cc-pVDZ (SP) ^(b)	-505.882538	-505.882723	-505.586090	-505.863762	-505.578837	-505.853478	-505.552047	-505.834044	-505.552712	-505.833628	-505.551991

^(a) optg stands for full optimization computations.
 ^(b) SP is for single point computations as the optimized PBE0/aug-cc-pVDZ geometry.

Table S2: Optimized geometries of 9-methyladenine in Cartesian coordinated as computed at the PBE0/au-cc-pVDZ level of theory.

9MA	9MA'	9MA ⁺	
C -1.06279700 1.93691600 0.00095700	C 1.10276500 1.92235900 0.00003100	C 0.558695 0.444630 -0.000000	
N 0.25389900 1.73825900 -0.00024700	N -0.25710900 1.71004600 -0.00022900	C -0.359508 -0.649611 -0.000000	
C 0.54513100 0.43380700 -0.00069400	C -0.55871500 0.44457500 -0.00006500	C -1.744755 -0.280951 0.000000	
C -0.36182500 -0.62724300 -0.00081900	C 0.35956900 -0.64968400 0.00014400	C -1.102807 1.922433 0.000000	
C -1.72375400 -0.26967400 -0.00076900	C 1.74486000 -0.28087800 0.00011000	N 0.257046 1.710117 -0.000000	
N -2.04993000 1.03088800 0.00117700	N 2.07073000 1.03257300 0.00006100	N -2.070767 1.032482 0.000000	
H -1.38870800 2.97882700 0.00229600	Н 1.40400200 2.97041500 -0.00005500	N 0.273036 -1.822428 0.000000	
N 0.29127200 -1.84031600 0.00051800	N -0.27297700 -1.82247700 -0.00010600	N 1.808178 -0.152983 -0.000000	
N 1.78511700 -0.15487300 0.00007300	N -1.80824000 -0.15308600 -0.00032300	C 1.578960 -1.478408 -0.000000	
N -2.71094800 -1.18983100 -0.00964200	N 2.71387300 -1.17744700 0.00003500	H -1.404212 2.970454 0.000000	
H -2.48753300 -2.17035900 0.02838700	H 2.50704400 -2.16981500 0.00002400	N -2.713724 -1.177589 0.000000	
H -3.66816200 -0.88073900 0.02827000	Н 3.67873400 -0.86268000 -0.00002800	Н -3.678575 -0.862812 0.000000	
C 1.56020500 -1.50946600 0.00087600	C -1.57900500 -1.47841700 0.00000600	Н -2.506965 -2.169976 0.000000	
C 3.05337000 0.53818900 -0.00014800	C -3.08818400 0.54209300 0.00025100	Н 2.389263 -2.203359 -0.000000	
Н 3.63296800 0.28832600 -0.89761400	Н -3.16189100 1.16959600 -0.89434000	C 3.088060 0.541998 0.000000	
H 2.84148600 1.61205200 0.00324800	Н -3.88976000 -0.20153300 0.00098100	Н 3.161401 1.170112 -0.894680	
Н 3.63585200 0.28314800 0.89396600	Н -3.16068800 1.17004100 0.89463000	Н 3.161401 1.170112 0.894680	
Н 2.38623800 -2.21531600 0.00187400	Н -2.38912900 -2.20358000 -0.00014700	Н 3.889450 -0.201788 0.000000	
I1(1H)	I1(1H)+	I2(1H)	I2(1H) ⁺
C -3.01110800 0.64640500 0.00035400	C -3.04628200 0.63552900 0.00015000	C -3.01099600 0.65402700 -0.00015300	C -3.04836700 0.63457300 -0.00016000
Н -2.74893800 1.70873400 -0.00053300	H -2.81109300 1.70331600 -0.00076400	Н -2.74313500 1.71506500 -0.00112500	Н -2.81297400 1.70228300 -0.00111200
N -1.77959000 -0.11188900 0.00001600	N -1.78673700 -0.10041800 0.00005500	N -1.78510300 -0.11195900 -0.00009500	N -1.79013700 -0.10255300 -0.00007900
C -1.62873900 -1.47420100 0.00001700	C -1.61473600 -1.46069800 0.00023300	C -1.64047600 -1.47527300 0.00011700	C -1.61797200 -1.46463400 0.00012400
Н -2.48701700 -2.13934600 0.00009300	Н -2.46497900 -2.13855300 0.00020700	Н -2.50278700 -2.13571700 0.00015800	Н -2.46881500 -2.14199800 0.00016600
N -0.37203200 -1.85879200 -0.00055100	N -0.34687600 -1.85416200 -0.00027000	N -0.38782700 -1.86752500 0.00020800	N -0.35104500 -1.85973900 0.00021800
C 0.33852300 -0.68930800 0.00005100	C 0.34589100 -0.70424600 0.00000100	C 0.33322900 -0.70426600 0.00010400	C 0.34520000 -0.71414000 0.00010600
C 1.76571500 -0.47298400 0.00040100	C 1.74928500 -0.45374300 0.00002100	C 1.76361300 -0.49128800 0.00014200	C 1.75473200 -0.46321700 0.00013500
N 2.76655100 -1.27155800 0.00021400	N 2.76207900 -1.26741900 -0.00010900	N 2.66641700 -1.39810700 0.00030400	N 2.64270800 -1.40520600 0.00029800
N 2.02808500 0.91471600 0.00011700	N 2.03970400 0.91726500 -0.00003000	H 3.60641700 -0.99899700 0.00029500	H 3.60786300 -1.06167800 0.00029300
C 1.10080800 1.90522400 -0.00023300	C 1.12779700 1.89502500 -0.00002300	N 2.02114000 0.90764200 -0.00003000	N 2.03471600 0.91953800 -0.00003900
H 1.50142300 2.91948300 -0.00026400	H 1.50836900 2.91612400 -0.00005000	C 1.08992000 1.90224300 -0.00021400	C 1.11237600 1.89479500 -0.00021600
N -0.18787500 1.73027300 -0.00026300	N -0.18586500 1.70504100 -0.00000600	H 1.49066400 2.91700100 -0.00034000	H 1.49024100 2.91744700 -0.00034400
C -0.51281500 0.40608500 -0.00023100	C -0.53524800 0.42741300 -0.00002200	N -0.19382400 1.72215600 -0.00025000	N -0.19605000 1.70110800 -0.00024600
Н -3.60250000 0.42166100 0.89644500	Н -3.62066100 0.38602100 0.89862500	C -0.51554700 0.39635000 -0.00008000	C -0.53972400 0.42041500 -0.00008300

Н -3.60364700 0.42043000 -0.89466100	Н -3.62154800 0.38468100 -0.89737800	H -3.60442800 0.43293400 0.89578600	H -3.62316300 0.38497800 0.89808100
H 3.01138800 1.15605200 0.00019600	H 3.03045400 1.15172900 -0.00008200	Н -3.60519700 0.43146200 -0.89520800	Н -3.62385200 0.38352800 -0.89755100
H 2.42902000 -2.23357400 -0.00015700	H 2.44308000 -2.24113700 -0.00021000	H 2.99438600 1.18205600 -0.00002000	H 3.01188700 1.19665200 -0.00003300
I1(3H)	I1(3H) ⁺	I2(3H)	I2(3H) ⁺
N -1.76736300 -0.12679600 -0.00002100	N -1.76613500 -0.12187600 -0.00002600	N 1.77687100 -0.12133300 -0.00002800	N 1.77438300 -0.11601700 0.00001800
C -1.59399700 -1.49700100 0.00029600	C -1.56390000 -1.49538100 -0.00034400	C 1.62226500 -1.49426800 0.00052400	C 1.58753900 -1.49393400 0.00005100
Н -2.44926100 -2.16577300 0.00043700	Н -2.40990500 -2.17825900 -0.00033000	H 2.48731800 -2.15075700 0.00071000	H 2.44226200 -2.16619400 0.00002500
N -0.33587500 -1.85315600 0.00003200	N -0.30225300 -1.85226400 0.00021800	N 0.37150300 -1.87057800 -0.00065700	N 0.33152900 -1.86777300 -0.00013100
C 0.37172200 -0.67454600 -0.00008800	C 0.38622400 -0.68278000 0.00007900	C -0.35717800 -0.70432200 -0.00002000	C -0.37344100 -0.71006600 -0.00001800
C 1.81184600 -0.43853100 -0.00032600	C 1.78339000 -0.40166900 0.00020900	C -1.79632800 -0.46657600 0.00004700	C -1.77198700 -0.42553000 -0.00002000
N 2.74444700 -1.31637200 -0.00004100	N 2.74878800 -1.30936100 0.00024800	N -2.66684100 -1.40410400 -0.00038000	N -2.65440300 -1.40629400 -0.00012600
H 2.31426200 -2.24449900 0.00022200	Н 2.33186900 -2.24949600 0.00022800	Н -3.59528400 -0.97583500 -0.00042700	H -3.59935100 -1.00225800 -0.00014300
N 2.17097700 0.93081800 -0.00002300	N 2.16576900 0.92491300 -0.00000700	N -2.16199800 0.90703700 0.00018000	N -2.15965000 0.90482600 0.00001300
C 1.28866600 1.85885300 0.00014200	C 1.28824200 1.86779300 -0.00018700	C -1.28549400 1.84331300 0.00029300	C -1.28769900 1.85314800 0.00006800
H 1.60612700 2.90482800 0.00016700	Н 1.59979900 2.91286900 -0.00024000	Н -1.60954200 2.88716100 0.00038000	H -1.60353500 2.89686700 0.00009700
N -0.08279600 1.68819500 0.00008100	N -0.08330600 1.66785700 -0.00018400	N 0.07993000 1.67257600 0.00019900	N 0.08165700 1.65421200 0.00007700
C -0.50486100 0.38522100 0.00005100	C -0.52582000 0.40452600 -0.00010300	C 0.50677900 0.36908500 0.00009000	C 0.52867900 0.39177600 0.00003200
Н -0.70599400 2.48058200 0.00012500	Н -0.70803100 2.46915100 -0.00026000	H 0.70338000 2.46485700 0.00022500	H 0.70566400 2.45591200 0.00011300
C -3.01226400 0.60269000 -0.00016800	C -3.04164900 0.58146000 0.00009700	C 3.00918500 0.62805300 -0.00018300	C 3.03984200 0.60392200 0.00002700
Н -3.09985600 1.23093300 0.89692200	H -3.13434300 1.19918700 0.90160400	Н 3.08837100 1.25733900 -0.89756700	H 3.12551500 1.22284800 -0.90148700
Н -3.09985800 1.23067100 -0.89744400	Н -3.13431900 1.19938700 -0.90127100	Н 3.08825800 1.25766700 0.89697200	H 3.12549200 1.22283500 0.90155200
Н -3.83782100 -0.11568100 -0.00006200	Н -3.84403700 -0.16142200 0.00000500	H 3.84586700 -0.07732600 0.00000400	H 3.85174000 -0.12858200 0.00003300

Table S3: PBE0/aug-cc-pVDZ main geometrical parameters (distances in Å and angles in degrees) of 9MA, of 9MA' and of 9MA⁺ in their respective electronic ground state.

			9MA		9MA′		9MA ⁺
Coordinate	This work	HF/4-21G a)	B3LYP/6-31G* b)	MP2/ 6-31G* c)	This work	This work	M06-2X/6-31+G(d,p) ^{d)}
$C_1 - N_2$	1.332	1.325	1.336	1.339	1.332	1.376	1.381
$N_2 - C_3$	1.337	1.336	1.339	1.344	1.337	1.301	1.297
$C_3 - C_4$	1.396	1.382	1.399	1.398	1.396	1.429	1.430
$C_4 - C_5$	1.408	1.396	1.410	1.410	1.408	1.434	1.436
$C_{5} - N_{6}$	1.341	1.337	1.345	1.343	1.341	1.353	1.357
$N_{6} - C_{1}$	1.340	1.339	1.343	1.353	1.340	1.315	1.312
$C_3 - N_9$	1.373	1.366	1.380	1.377	1.372	1.385	1.389
$N_9 - C_{13}$	1.373	1.388	1.381	1.372	1.373	1.345	1.342
$C_{13} - N_8$	1.311	1.295	1.312	1.328	1.311	1.351	1.353
$N_8 - C_4$	1.378	1.398	1.384	1.378	1.378	1.333	1.328
$N_9 - C_{14}$	1.445	1.459	1.454	1.451	1.444	1.457	1.465
$C_5 - N_{10}$	1.350	1.341	1.358	1.353	1.350	1.320	1.317
$C_1 - H_7$	1.092	1.068	1.088	/	1.092	1.091	/
$N_{10} - H_{11}$	1.006	0.996	1.009	/	1.006	1.014	/
$N_{10} - H_{12}$	1.007	0.996	1.009	/	1.007	1.015	/
$C_{13} - H_{18}$	1.087	1.065	1.083	/	1.087	1.087	/
$C_{14} - H_{15}$	1.097	1.081	1.095	/	1.095	1.095	/
$C_{14} - H_{16}$	1.095	1.080	1.091	/	1.097	1.093	/
$C_{14} - H_{17}$	1.097	1.081	1.095	/	1.097	1.095	/

$N_6 - C_1 - N_2$	128.9	126.57	128.6	129.0	128.9	128.5	
$C_1 - N_2 - C_3$	111.2	113.23	111.2	110.6	111.1	112.3	
$N_2 - C_3 - C_4$	126.9	125.26	127.0	127.3	126.9	126.6	
$C_3 - C_4 - C_5$	115.8	117.16	115.8	115.6	115.8	115.1	
$C_4 - C_5 - N_6$	118.8	117.97	118.9	119.0	118.8	118.8	
$C_{5} - N_{6} - C_{1}$	118.5	119.78	118.3	118.3	118.5	118.6	
$C_4 - C_5 - N_{10}$	122.3	122.73	122.3	121.9	122.3	122.3	
$C_3 - C_4 - N_8$	111.2	109.85	111.3	111.9	111.2	111.6	
$C_4 - N_8 - C_{13}$	103.7	104.97	103.7	102.9	103.6	103.6	
$N_8 - C_{13} - N_9$	114.0	112.87	114.2	114.2	114.1	114.5	
$C_{13} - N_9 - C_3$	105.9	106.16	105.8	106.1	105.9	105.8	
$N_9 - C_3 - N_2$	127.9	128.6	127.9	127.8	127.9	128.9	
$N_6 - C_1 - H_7$	115.2	116.27	115.2		115.2	116.5	
$C_{13} - N_9 - C_{14}$	128.1	128.18	128.3	128.2	128.0	128.3	
$N_8 - C_{13} - H_{18}$	124.9	125.8	124.9		120.9	123.4	
$C_5 - N_{10} - H_{12}$	119.1	118.94	117.8		119.1	119.2	
$C_5 - N_{10} - H_{11}$	120.1	120.72	119.0		120.1	121.0	
$H_{12} - N_{10} - H_{11}$	120.6	120.35	119.0		120.6	119.8	
$N_9 - C_{14} - H_{15}$	110.8	110.06	110.8		108.8	109.4	
$N_9 - C_{14} - H_{16}$	107.5	108.83	107.5		110.3	108.6	
$N_9 - C_{14} - H_{17}$	110.7	110.06	110.8		110.3	109.4	

a. Ref. ¹. b. Ref. ². c. Ref. ³.

d. Ref.⁴.

Table S4: Total energies (in Hartree) and adiabatic ionization energies (AIE in eV) of 9-methyladenine (9MA) and of its conformer (9MA') at the (R)CCSD(T)-F12/aug-cc-pVDZ ($+\Delta CV+\Delta SR+\Delta ZPVE$) level of theory. $\Delta ZPVE$ corresponds to the zero-point vibrational energy (in Hartree) as computed at the anharmonic level of theory.

Molecular species	9MA	9MA'	9MA+				
Total energies (in Hartree)							
PBE0/aug-cc-pVDZ (optg) ^(a)	-506.138191	-506.138150	-505.849182				
ZPVE	0.140330	0.140281	0.140783				
(R)CCSD(T)-F12/aug-cc-pVDZ (SP) ^(b)	-505.882538	-505.882723	-505.586090				
CCSD(T,fc)/cc-pwCVTZ (SP) ^(b)	-505.811989	-505.812060	-505.520508				
CCSD(T,full)/cc-pwCVTZ (SP) ^(b)	-506.357299	-506.357359	-506.06517				
CCSD(T)/cc-pVTZ (SP) ^(b)	-505.781274	-505.781335	-505.490057				
CCSD(T)/cc-pVTZ-DK (SP) ^(b)	-505.766344	-505.766406	-505.475134				
Ionization end	ergies (in eV)	I	I				
PBE0+ZPVE (optg)	7.876	7.876					
(R)CCSD(T)-F12	8.067	8.072					
ΔCV	0.01763	0.01733					
ΔSR	-0.00019	-0.00016					
ΔΖΡΥΕ	0.01232	0.01366					
$PBE0/aug-cc-pVDZ + \Delta ZPVE (optg)$ // (R)CCSD(T)-F12(+ ΔCV + ΔSR) (SP)	8.097	8.102					

^(a) optg stands for full optimization computations.

^(b) SP is for single point computations as the optimized PBE0/aug-cc-pvdz geometry.

Table S5: PBE0/aug-cc-pVDZ harmonic (ω in cm⁻¹) and anharmonic frequencies (ν in cm⁻¹) of the two conformers of 9-methyadenine neutral.

9N	1A	9MA'		
ω	ν	ω	ν	
3781	3803	3781	3918	
3638	3634	3638	3723	
3260	3135	3260	3134	
3194	3063	3194	3059	
3180	3040	3177	3032	
3146	3006	3153	3006	
3065	2958	3071	2957	
1692	1721	1692	1742	
1661	1611	1661	1606	
1621	1583	1621	1578	
1566	1505	1564	1508	
1521	1479	1521	1468	
1492	1453	1492	1475	
1479	1440	1486	1461	
1472	1429	1453	1393	
1433	1406	1434	1378	
1423	1392	1420	1420	
1393	1353	1395	1356	
1381	1367	1385	1364	
1370	1337	1371	1336	
1290	1241	1288	1219	
1263	1245	1269	1249	
1231	1195	1231	1188	
1140	1128	1140	1115	
1090	1052	1085	1057	
1064	1043	1062	1021	
1009	872	1009	815	
985	960	985	959	
911	902	912	904	

864	840	863	834
822	804	821	801
756	750	757	751
741	731	739	729
696	693	697	699
666	660	664	661
590	480	589	404
571	559	572	557
549	824	549	_*
539	538	542	536
530	532	529	529
312	352	311	358
306	308	304	304
248	250	257	222
221	199	215	190
199	125	195	86
115	36	113	5
54	_*	49	_*
46	_*	38	_*

* Strongly anharmonic.

			1
state	Cartesian coordinates	state	Cartesian coordinates
\mathbf{D}_0	C 0.5504654764 0.3898769628 0.00000000	D_1	C 0.5532803546 0.4175289653 -0.0052136345
	C -0.3299177446 -0.6398040612 0.00000000		C -0.3622520833 -0.6438614308 -0.0081830020
	C -1.7094058445 -0.3080866816 0.00000000		C -1.7226618023 -0.3326675362 -0.0314804785
	C -1.1437142998 1.9611516771 0.00000000		C -1.0175762322 1.9793824321 -0.0038212955
	N 0.2247402361 1.7363884936 0.00000000		N 0.2537902546 1.7613050734 -0.0338639506
	N -2.0880961807 1.0519823758 0.00000000		N -1.9862287403 0.9897759614 0.1923689496
	N 0.3188989329 -1.8381772665 0.00000000		N 0.3131996497 -1.8447404927 0.0123091320
	N 1.7792593083 -0.1575349960 0.00000000		N 1.7622347114 -0.1325612486 -0.0025563975
	C 1.5699050373 -1.5092280984 0.00000000		C 1.5468786006 -1.5069481130 0.0099877620
	H -1.4436544866 2.9930171282 0.00000000		Н -1.4004746559 2.9829370951 -0.0495323060
	N -2.6726067955 -1.1590626403 -0.00000000		N -2.7206620302 -1.1867455326 -0.1550532134
	Н -3.6219218050 -0.8407766790 -0.00000000		Н -3.6645299476 -0.8790282340 -0.0703962270
	Н -2.4800904157 -2.1420686498 -0.00000000		Н -2.5333808789 -2.1630142404 -0.2289280074
	Н 2.3907881986 -2.2011563366 0.00000000		Н 2.3769537205 -2.1898313471 0.0145864883
	C 3.0705728703 0.5352876005 0.00000000		C 3.0584360592 0.5572061018 0.0144536862
	Н 3.1576200000 1.1509200000 -0.8872223		Н 3.0808695828 1.3025028400 -0.7698169969
	Н 3.1576200000 1.1509200000 0.8872223		Н 3.2127267704 1.0279642103 0.9778528007
	Н 3.8537937275 -0.2114307778 0.00000000		Н 3.8335566669 -0.1772575042 -0.1621303094
D2	C 0.5439619855 0.4261106126 0.0002634523	D4	C 0.5765608359 0.4173499331 -0.0097790370
	C -0.3607335962 -0.6346116629 0.0000896471		C -0.3621619921 -0.6226398441 -0.0353548899
	C -1.7345748573 -0.3343445168 0.0032748475		C -1.7316953980 -0.3079782112 -0.0455102379
	C -1.0228804761 2.0089336213 -0.0042227801		C -1.1042448314 1.9795930099 -0.0034296159
	N 0.2483214104 1.7600975091 -0.0037318890		N 0.2773113904 1.7613503794 0.0060804233
	N -1.9568647732 0.9947704403 0.0347380205		N -2.0878197461 1.0178694658 -0.0282332700
	N 0.3039785990 -1.8332115922 0.0019380465		N 0.2845565295 -1.8272329004 -0.0467123103
	N 1.7671609293 -0.1392589771 -0.0006753299		N 1.7873711271 -0.1414036080 -0.0075136291
	C 1.5464124592 -1.4936552152 0.0014289487		C 1.5730564324 -1.5043734011 -0.0277829661
	H -1.4044471498 3.0125911877 -0.0143611198		H -1.4280117248 3.0021988714 0.0134479031
	N -2.7250830162 -1.2046370621 -0.0045483127		N -2.7082176070 -1.1958608972 -0.0683718435
	Н -3.6772304394 -0.9126616533 -0.0008557610		Н -3.6566669495 -0.8883470989 -0.0797103926
	Н -2.5159458125 -2.1795887629 -0.0127356776		Н -2.5110706719 -2.1728634365 -0.0886307945
	H 2.3683589714 -2.1861889900 0.0022042002		Н 2.3798703165 -2.2105290156 -0.0319756340
	C 3.0607179458 0.5489393376 -0.0006445893		C 3.0848162419 0.5440968867 0.0339234849
	Н 3.1510318314 1.1642140093 -0.8874273698		Н 3.1213423248 1.2956566925 -0.7442304691
	Н 3.1499526760 1.1647374951 0.8859625669		Н 3.2289502893 1.0060176532 1.0030005033
	Н 3.8420233128 -0.2002887805 -0.0001139003		Н 3.8602134331 -0.1909574791 -0.1386342246

Table S6: Cartesian coordinates (in Å) of the equilibrium geometries of D_0 - D_4 of 9-methyladenine cation as computed at the CASSCF/aug-cc-pVDZ level.

Table S7: PBE0/aug-cc-pVDZ harmonic (ω in cm⁻¹) and anharmonic frequencies (ν in cm⁻¹) of the 9methyladenine cation, 9MA⁺. In plane vibrations: ν stretching, δ deformation, β bending. Out-of-plane vibrations: η twisting, γ wagging, τ torsion.

Mode	Sum	6		Assignment
WIGue	Sym	ω	v	Assignment
1	а′	3688	3506	vNH ₂ a
2	а′	3550	3389	vNH_2 s
3	а′	3272	3141	$vC_{13} - H_{18}$
4	а′	3229	3103	$vC_1 - H_7$
5	а′	3205	3060	vCH ₃
6	а′	3089	2973	vCH ₃
7	а′	1680	1640	$\beta NH_2, \nu C_5 - N_{10}$
8	а′	1670	1628	$\beta NH_2, vN_2 - C_3$
9	а′	1612	1575	$\beta NH_2, \nu C_5 - C_4$
10	а′	1555	1516	$\beta NH_2, \beta C_{13} - H_{18}, \nu N_9 - C_{13}$
11	а′	1514	1485	$\beta NH_2, \beta C_1 - H_7$
12	а′	1485	1444	β CH ₃
13	а′	1461	1424	$\beta CH_3, vN_6 - C_1$
14	а′	1456	1424	$\beta C_1 - H_7, \beta C_{13} - H_{18}, \delta ring$
15	а′	1429	1392	βCH_3
16	а′	1401	1372	$\beta C_1 - H_7$
17	а′	1386	1351	$\beta C_{13} - H_{18}, \beta C H_3$
18	а′	1331	1308	$\beta C_1 - H_7, \beta C_{13} - H_{18}, \beta NH_2$
19	а′	1266	1228	$\beta C_1 - H_7, \beta C_{13} - H_{18}, \beta NH_2$
20	а′	1220	1189	$\beta CH_3, \beta C_{13} - H_{18}$
21	а′	1190	1164	$\beta NH_2, \beta C_1 - H_7, \beta C_{13} - H_{18}$
22	а′	1077	1054	ηCH_3
23	а′	1047	1027	$\beta NH_2, \delta ring$
24	a'	1005	986	βNH_2
25	а′	883	867	δ ring
26	а′	753	743	δ ring
27	а′	726	714	δ ring
28	а′	586	582	$\beta NH_2, \delta ring$
29	а′	537	525	δ ring, $\beta CH_2, \beta C_{13} - H_{18}$
30	а′	504	499	δring
31	а′	312	313	$\beta NH_2, \beta CH_3$
32	а′	216	215	$\beta CH_3, \beta NH_2$
33	a″	3186	3044	vCH ₃
34	а″	821	808	auring
35	а″	718	715	ηNH_2
36	а″	638	626	γNH_2
37	а″	620	579	ηNH_2
38	а″	573	556	δ ring, $\eta CH_2, \gamma C_{13} - H_{18}$
39	а″	1451	1414	$ au CH_3$

40	а″	1140	1110	η CH ₃
41	а″	1000	973	$\eta C_1 - H_7$
42	а″	934	903	$\eta C_{13} - H_{18}$
43	а″	445	433	$\eta C_1 - N_7, \eta N H_2$
44	а″	297	292	$ au$ ring, $ au CH_3$
45	а″	249	245	au ring
46	а″	182	179	$ au$ ring, $ au CH_3$
47	a''	109	100	$\gamma NH_2, \gamma CH_3$
48	a‴	74	18	$ au CH_3$

¹ K. D. Rasmussen, K. Helin. Role of TET enzymes in DNA methylation, development, and cancer, Genes Dev. 30, 733e750 (2016).

² Y. Xue; D. Xie; G. Yan. Density functional theory studies on molecular structure and IR spectra of 9methyladenine: A scaled quantum mechanical force field approach. I. J. Quant. Chem. 76, 686–699 (2000).

³ E. L. Stewart, C. K. Foley, L. Allinger, J. P. Bowen. Ab Initio Calculations with Electronic Correlation (MP2) on the Nucleic Acid Bases and Their Methyl Derivatives. J. Am. Chem. Soc. 116, 7282 (1994).

⁴ S. R. Huang, A. Dang, F. Turecek. Ground and Excited States of Gas-Phase DNA Nucleobase Cation-Radicals. A UV vis Photodisociation Action Spectroscopy and Computational Study of Adenine and 9-Methyladenine. J. Am. Soc. Mass Spectro. 31(6), 1271–1281 (2020).