Excited-State Engineering of Oligothiophenes via Phosphorus Chemistry towards Strong Fluorescent Materials

Zi Yang, ^{a,b,c} Zhikai Zhang,^a CeCe Xue,^a Kai Yang,^a Rong Gao,^a Na Yu,^a Yi Ren*^{a,b,c}

^a School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China

^b Shanghai Advanced Research Institute, Chinese Academy of Sciences 201203, Shanghai, People's Republic of China

^c University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Materials and Experiments

All manipulations were carried out under a dry nitrogen atmosphere employing standard Schlenk techniques. Reagents were purchased from Shanghai Titan Scientific, Energy Chemical, J&K Scientific, Sinopharm Chemical Reagent and TCI Shanghai, and were, unless otherwise noted, used as-received. Dichlorophenvlphosphine was re-distilled before using in the experiments. Solvents were dried using an MBRAUN Solvent Purification System. NMR solvents were purchased from Cambridge Isotope Laboratories and J&K Scientific. ¹H NMR, ¹³C {¹H} NMR, and ³¹P {¹H} NMR were recorded on Bruker AVANCE NEO 400 and AVANCE III HD500 MHz spectrometers. High-resolution mass spectra were carried out on the Thermo Scientific ultimate 3000-Q Exactive Focus LC-MS spectrometer in atmospheric press chemical ionization (APCI) and electrospray ionization (ESI) mode. The single crystal structures of T4 (CCDC2093209) were obtained at the X-ray Crystallography Facility using a Bruker D8 Venture diffractometer at the ShanghaiTech University. UV-vis experiments were carried out on the Agilent Cary 100 spectrophotometer. The fluorescence measurements were performed using a HORIBA Fluorolog-3 fluorescence spectrophotometer. Absolute quantum yields were obtained with a pre-calibrated Quanta- ϕ integrating sphere attached to a Fluorolog-3 instrument. Lifetime experiments were carried out on a HORIBA DeltaFlex-011x time-resolved fluorescence spectrometer. Melting point experiments were carried out on a TA Instruments Discovery 250 Differential Scanning Calorimeter. Theoretical calculations were carried out using the GAUSSIAN 03 suite of programs.^{S1}

Scheme S1. Synthesis of D1.

Compound D1.

Under N₂ atmosphere, 2,2'-Dithiophene (600 mg, 3.61 mmol) and 100 mL dry THF were added in a 200 mL flask, then the solution was cooled to -78°C in an acetone bath and stirred for 15 min, and n-butyllithium (2.39 mL,1.6 M in hexane, 3.79 mmol) was added dropwise. The mixture was allowed up to room temperature slowly and stirred for 1 h, dichlorophenylphosphine (0.25 mL, 1.80 mmol) was slowly injected in one portion at -78°C. To complete the reaction, the mixture was allowed up to room temperature slowly and stirred for overnight. Finally, the solvent of mixture was removed under vacuum, a yellow oil derivative was obtained. At last, the residue was purified by silica gel column chromatography (CH₂Cl₂/petroleum ether 3:17). Yield: 500 mg of blue-green powder (63%). No melting point was observed due to the amorphous nature of **D1** (T_g = 1.8 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.45 (m, 2H), 7.38-7.35 (m, 3H), 7.29 (dd, *J* = 6.5, 3.6 Hz, 2H), 7.21 – 7.22 (dd, *J* = 5.1, 1.1 Hz, 2H), 7.17 (dd, *J* = 3.6, 1.3 Hz, 4H), 6.99 (dd, *J* = 5.1, 3.6 Hz, 2H) ppm. ¹³C NMR (126MHz, CDCl₃) δ 144.3, 138.2 (d, J = 6.1 Hz), 137.3 (d, J = 29.0 Hz), 137.0 (d, J = 26.9 Hz), 136.9, 132.1 (d, J = 19.2 Hz), 129.0, 128.6 (d, J = 6.8 Hz), 127.9, 125.0, 124.5, 124.4 ppm. ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -32.1 ppm.

Figure S1. ¹H NMR (400 MHz, CDCl₃, 298K) of **D1**.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 fl (ppm)

Scheme S2. Synthesis of T1.

Compound T1.

Under N₂ atmosphere, 2,5-Bis(2-thienyl)thiophene (500 mg, 2.02 mmol) and 100 mL dry THF were added in a 200 mL flask, then the solution was cooled to -78°C in an acetone bath and stirred for 15 min, and nbutyllithium (1.32 mL,1.6 M in hexane, 2.12 mmol) was added dropwise. The mixture was allowed up to room temperature slowly and stirred for 1 h, dichlorophenylphosphine (0.14 mL, 1.01 mmol) was slowly injected in one portion at -78°C. To complete the reaction, the mixture was allowed up to room temperature slowly and stirred for overnight. Finally, the solvent of mixture was removed under vacuum, a yellow oil derivative was obtained. The reaction mixture was purified by silica gel column chromatography (CH₂Cl₂/petroleum ether 3:17). Yield: 475 mg of yellow powder (78%, T_g = 30.0 °C, T_m = 155.1 °C).¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.37 (m, 3H), 7.29 (dd, *J* = 6.5, 3.7 Hz, 2H), 7.21 (dd, *J* = 5.1, 1.3 Hz, 2H), 7.17 (dd, *J* = 3.7, 1.3 Hz, 4H), 7.07 (q, *J* = 3.8 Hz, 4H), 7.02 (dd, *J* = 5.1, 3.6 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 144.03, 137.52, 137.23, 137.12, 137.06, 137.03, 135.70, 132.31, 132.12, 129.19, 128.71, 128.64, 128.06, 125.10, 124.81, 124.50, 124.46, 124.37, 123.99 ppm. ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -31.9 ppm. HR LC-MS: Calcd: [M+H]⁺ = 602.9622, found: m/z = 602.9615.

Figure S4. ¹H NMR (400 MHz, CDCl₃, 298K) of T1.

---31.93

Figure S6. ¹³C NMR (101 MHz, CDCl₃, 298K) of T1.

(1): n-BuLi, PPhCl₂, THF, -78°C → RT, Overnight

(2): H₂O₂(30%), CH₂Cl₂, RT, Overnight

Scheme S3. Synthesis of D2.

Compound D2.

Under N₂ atmosphere, 2,2'-Dithiophene (500 mg, 3.01 mmol) and 100 mL dry THF were added in a 200 mL flask, then the solution was cooled to -78°C in an acetone bath and stirred for 15 min, and n-butyllithium (1.97 mL,1.6 M in hexane, 3.16 mmol) was added dropwise. The mixture was allowed up to room temperature slowly and stirred for 1 h, dichlorophenylphosphine (0.21 mL, 1.51 mmol) was slowly injected in one portion at -78°C. To complete the reaction, the mixture was allowed up to room temperature slowly and stirred for overnight. Finally, the solvent of mixture was removed under vacuum, the residue was purified by flash silica gel column chromatography (CH₂Cl₂/petroleum ether 3:17). After that, the solid was dissolved in 50 ml CH₂Cl₂, and 5 ml H₂O₂ (30% in H₂O) was added. The solution was stirred for overnight at room temperature. Then, the mixture was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 30 mL), organic layer was dried over anhydrous Na₂SO₄. The solvent of mixture was removed under vacuum, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether 1:9), Yield: 433 mg of white powder (63%). No melting point was observed due to the amorphous nature of D2 ($T_g = 22.4$ °C). ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.83 (m, 2H), 7.60 (td, *J* = 7.3, 1.7 Hz, 1H), 7.52 (td, *J* = 7.6, 3.3 Hz, 2H), 7.46 (dd, J = 7.9, 3.8 Hz, 2H), 7.29 (dd, J = 5.1, 1.1 Hz, 2H), 7.25 - 7.22 (m, 4H), 7.03 (dd, J = 5.1, 3.6 Hz, 2H)ppm. ¹³C NMR (101 MHz, CDCl₃) δ 146.4 (d, J = 6.1 Hz), 137.8 (d, J = 10.1 Hz), 135.8 (d, J = 2.0 Hz), 132.8 (d, J = 117.2 Hz), 132.7 (d, J = 3.0 Hz), 132.2 (d, J = 120.2 Hz), 131.6 (d, J = 11.1 Hz), 128.7 (d, J = 13.1 Hz), 128.2, 126.2, 125.4, 124.6 (d, J = 13.1 Hz) ppm. ³¹P {¹H} NMR (162 MHz, CDCl₃) δ 13.0 ppm. HR LC-MS: Calcd: $[M+H]^+ = 454.9817$, found: m/z = 454.9817.

Figure S7. ¹H NMR (400 MHz, CDCl₃, 298K) of **D2**.

-12.98

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

Figure S9. ¹³C NMR (101 MHz, CDCl₃, 298K) of D2.

Scheme S4. Synthesis of T2.

Compound T2

Compound **T1** (70.9 mg, 0.11 mmol) was dissolved in 30 ml CH₂Cl₂, and 3 ml H₂O₂ (30% in H₂O) was added. The solution was stirred for overnight at room temperature. Then, the mixture was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 30 mL), organic layer was dried over anhydrous Na₂SO₄. The solvent of mixture was removed under vacuum, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether 1:19), Yield: 57.4 mg of green powder (79%, T_g = 51.5 °C, T_m = 217.4 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.83 (m, 2H), 7.61 (dd, J = 7.5, 1.7 Hz, 1H), 7.54 (dt, J = 7.6, 3.7 Hz, 2H), 7.47 (dd, J = 7.9, 3.8 Hz, 2H), 7.25 – 7.22 (m, 2H), 7.19 (dd, J = 3.6, 1.2 Hz, 2H), 7.15 (d, J = 3.8 Hz, 2H), 7.09 (d, J = 3.8 Hz, 2H), 7.03 (dd, J = 5.1, 3.6 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 146.2 (d, J = 6.1 Hz), 138.1 (d, J = 28.28 Hz), 137.9, 136.8 (d, J = 168.7 Hz), 134.5, 133.9 (d, J = 106.8 Hz), 132.2 (d, J = 120.2 Hz) 132.8, 132.8, 132.2 (d, J = 114.1 Hz), 131.7 (d, J = 11.1 Hz), 128.8 (d, J = 13.13 Hz), 128.1, 126.1, 125.1, 124.5 (d, J = 27.27 Hz), 124.5 (d, J = 14.1 Hz) ppm. ³¹P {¹H} NMR (162 MHz, CDCl₃) δ 12.9 ppm. HR LC-MS: Calcd: [M+H]⁺ = 618.9571, found: m/z = 618.9568.

Figure S11. ³¹P {¹H} NMR (162 MHz, CDCl₃, 298K) of T2.

Figure S12. ¹³C NMR (101 MHz, CDCl₃, 298K) of T2.

 S_8 anhydrous CH₂Cl₂, RT, Overnight

Scheme S5. Synthesis of D3.

Compound D3.

Under N₂ atmosphere, Compound **D1** (530 mg, 1.21 mmol) was dissolved in 15 ml anhydrous CH₂Cl₂, and sublimed sulfur (194 mg, 6.04 mmol) was added. The solution was stirred for overnight at room temperature. After that, the solvent of mixture was removed under vacuum, the residue was purified by silica gel column chromatography (CH₂Cl₂/petroleum ether 1:1), Yield: 315 mg of green powder (55%) No melting point was observed due to the amorphous nature of **D3** (T_g = 20.7 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.96 – 7.87 (m, 2H), 7.60 – 7.54 (m, 1H), 7.52 – 7.48 (m, 2H), 7.43 (dd, *J* = 8.8, 3.7 Hz, 2H), 7.29 (dd, *J* = 5.1, 1.2 Hz, 2H), 7.23 (dd, *J* = 3.7, 1.2 Hz, 2H), 7.20 (dd, *J* = 3.8, 2.0 Hz, 2H), 7.03 (dd, *J* = 5.1, 3.6 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 145.6 (d, J = 6.1 Hz), 137.6 (d, J = 9.1 Hz), 135.9 (d, 2.0 Hz), 133.9 (d, J = 99.0 Hz), 132.3 (d, J = 4.0 Hz), 131.5 (d, J = 12.1 Hz), 128.8 (d, J = 13.1Hz), 128.2, 126.2, 125.4, 124.6 (d, J = 7.1) ppm. ³¹P {¹H} NMR (162 MHz, CDCl₃) δ 23.1 ppm. HR LC-MS: Calcd: [M+H]⁺ = 470.9588, found: m/z = 470.9584.

Figure S14. ^{31}P $\{^{1}H\}$ NMR (162 MHz, CDCl₃, 298K) of D3.

40 30 f1 (ppm)

20

10

Ó

-10

-20

-30

-40

-50

-60

-70

140

130

120

110

100

90

70

80

60

50

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

Figure S15. ¹³C NMR (101 MHz, CDCl₃, 298K) of D3.

Scheme S6. Synthesis of T3.

Compound T3.

Under N₂ atmosphere, Compound **T1** (285 mg, 0.473 mmol) was dissolved in 15 ml anhydrous CH₂Cl₂, and sublimed sulfur (76 mg, 2.365 mmol) was added. The solution was stirred for overnight at room temperature. After that, the solvent of mixture was removed under vacuum, the residue was purified by silica gel column chromatography (CH₂Cl₂/petroleum ether 1:1), Yield: 144 mg of green powder (48%). No melting point was observed due to the amorphous nature of **D1** (T_g = 47.6 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.90 (m, 2H), 7.60 – 7.55 (m, 1H), 7.54 – 7.47 (m, 2H), 7.43 (dd, *J* = 8.8, 3.8 Hz, 2H), 7.24 (dd, *J* = 5.1, 1.2 Hz, 2H), 7.18 (dt, *J* = 4.0, 1.8 Hz, 4H), 7.14 (d, *J* = 3.9 Hz, 2H), 7.08 (d, *J* = 3.9 Hz, 2H), 7.02 (dd, *J* = 5.1, 3.6 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 146.4 (d, J = 5.0 Hz), 138.1, 137.7 (d, J = 9.1 Hz), 136.7, 134.5 (d, J = 1.0 Hz), 133.9 (d, J = 99.0 Hz), 133.8 (d, J = 93.9Hz), 132.3 (d, J = 3.0 Hz), 131.6 (d, J = 12.1 Hz), 128.8 (d, J = 13.1 Hz), 128.1, 120.0, 125.2, 124.6, 124.5 (d, J = 14.1Hz), 124.3 ppm. ³¹P {¹H} NMR (202 MHz, CDCl₃) δ 23.0 ppm. HR LC-MS: Calcd: [M+H]⁺= 634.9343, found: m/z = 634.9344.

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 fl (ppm)

Figure S17. ³¹P {¹H} NMR (202 MHz, CDCl₃, 298K) of T3.

77.16 CDCl3 146.38 146.38 137.16 137.74 137.74 137.74 137.61 137.61 134.55 133.58 133.43 134.51 134.55 133.58 133.58 133.58 133.58 133.56 135.56 13

Figure S18. ¹³C NMR (101 MHz, CDCl₃, 298K) of T3.

Se anhydrous toluene, 60°C, Overnight

Scheme S7. Synthesis of T4.

Compound T4.

Under N₂ atmosphere, Compound **T1** (280 mg, 0.465 mmol) was dissolved in 20 ml anhydrous toluene, and selenium powder (75 mg, 0.950 mmol) was added. The solution was stirred for overnight at 60°C. After cooling to room temperature, the solvent of mixture was removed under vacuum, the residue was purified by silica gel column chromatography (CH₂Cl₂/petroleum ether 3:7), Yield: 294.7 mg of yellow powder (93 %). No melting point was observed due to the amorphous nature of **T4** ($T_g = 48.2$ °C). ¹H NMR (500 MHz, CDCl₃) δ 7.96 – 7.88 (m, 2H), 7.57 – 7.54 (m, 1H), 7.52 – 7.49 (m, 2H), 7.44 (dd, *J* = 9.0, 3.8 Hz, 2H), 7.24 (d, *J* = 1.1 Hz, 2H), 7.21 (dd, *J* = 3.8, 1.8 Hz, 2H), 7.20 – 7.17 (m, 2H), 7.15 (d, *J* = 3.8 Hz, 2H), 7.09 (d, *J* = 3.8 Hz, 2H) ppm.¹³C NMR (101 MHz, CDCl₃) δ 146.5 (d, J = 5.0 Hz), 138.2 (d, J = 3.0 Hz), 128.1, 136.8, 134.5 (d, J = 1.0 Hz), 133.0 (d, J = 84.8 Hz), 132.7 (d, J = 89.9 Hz), 132.4 (d, J = 3.0 Hz), 131.9 (d, J = 12.1 Hz), 128.8 (d, J = 14.1 Hz), 128.1, 126.1, 125.2, 124.6, 124.5 (d, J = 14.1 Hz), 124.3 ppm.³¹P {¹H} NMR (202 MHz, CDCl₃) δ 8.4 ppm. HR LC-MS: Calcd: [M+H]⁺ = 682.8787, found: m/z = 682.8772.

Figure S19. ¹H NMR (500 MHz, CDCl₃, 298K) of T4.

Figure S20. ^{31}P $\{^{1}H\}$ NMR (202 MHz, CDCl₃, 298K) of T4.

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fil(ppm)

Figure S21. ¹³C NMR (101 MHz, CDCl₃, 298K) of T4.

Scheme S8. Synthesis of D5-Br.

Compound D5-Br.

Under N₂ atmosphere, Compound **D1** (511.6 mg, 1.17 mmol) was dissolved in 20 ml anhydrous toluene, and 1-(Bromomethyl)-2,3,4,5,6-pentafluorobenzene (2.33 g, 8.93 mmol) was added. The solution was stirred for 72h at 120°C. After cooling to room temperature, the solvent of mixture was removed under vacuum, the residue was purified by silica gel column chromatography (MeOH/CH₂Cl₂ 3:97). Yield: 323 mg of paleyellow powder (40 %). No melting point was observed due to the amorphous nature of **D1** (T_g = 97.7 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.33 (m, 2H), 8.02 (dd, *J* = 14.1, 7.7 Hz, 2H), 7.86 (t, *J* = 7.3 Hz, 1H), 7.75 – 7.69 (m, 2H), 7.49 (t, *J* = 3.2 Hz, 2H), 7.43 (d, *J* = 5.0 Hz, 2H), 7.33 (d, *J* = 3.7 Hz, 2H), 7.09 (dd, *J* = 5.1, 3.6 Hz, 2H), 5.78 (d, *J* = 14.1 Hz, 2H) ppm. ³¹P {¹H} NMR (162 MHz, CDCl₃) δ 9.4 ppm. ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -135.8 (db, J = 21.0 Hz), -150.0 – -151.0 (m), -159.5 (d, J = 19.7 Hz) ppm. HR LC-MS: Calcd: [M-Br]⁺ = 618.9866, found: m/z = 618.9865.

Figure S22. ¹H NMR (400 MHz, CDCl₃, 298K) of D5-Br.

Figure S23. ³¹P {¹H} NMR (162 MHz, CDCl₃, 298K) of D5-Br.

Scheme S9. Synthesis of T6-Br.

Compound T6-Br.

Under N₂ atmosphere, Compound **T1** (475 mg, 0.788 mmol) was dissolved in 20 ml anhydrous toluene, and 1-(Bromomethyl)-2,3,4,5,6-pentafluorobenzene (1.03 g, 3.94 mmol) was added. The solution was stirred for 72h at 120°C. After cooling to room temperature, the solvent of mixture was removed under vacuum, the residue was purified by silica gel column chromatography (MeOH/CH₂Cl₂ 3:97). Yield: 320.4 mg of yellow powder (47 %). No melting point was observed due to the amorphous nature of **T6-Br** (T_g = 108.5 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.39 (dd, *J* = 8.2, 4.1 Hz, 2H), 8.02 (dd, *J* = 14.2, 7.8 Hz, 2H), 7.90 – 7.83 (m, 1H), 7.73 (dt, *J* = 11.4, 5.7 Hz, 2H), 7.46 (dd, *J* = 4.1, 2.5 Hz, 2H), 7.30 (dd, *J* = 5.1, 1.2 Hz, 2H), 7.25 – 7.23 (m, 4H), 7.13 (d, *J* = 3.8 Hz, 2H), 7.05 (dd, *J* = 5.1, 3.6 Hz, 2H), 5.79 (d, *J* = 14.1 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 152.2 (d, J = 6.1 Hz), 145.2 (d, J = 10.1 Hz), 140.6, 136.2 (d, J = 3.0 Hz), 136.0, 133.5 (d, J = 12.1 Hz), 132.2 (d, J = 1.0 Hz), 130.5 (d, J = 14.1 Hz), 128.3, 128.1, 126.4 (d, J = 15.1 Hz), 126.0, 125.1, 124.9, 119.9 (d, J = 92.9 Hz), 111.7 (d, J = 107.1 Hz), 25.0 (d, J = 55.5Hz) ppm.³¹P {¹H} NMR (162 MHz, CDCl₃) δ 9.3 ppm.¹⁹F {¹H} NMR (471 MHz, CDCl₃) δ -135.9 (db, J = 18.6 Hz), -150.4 (td, J = 20.9, J = 6.8 Hz), -159.5 (t, J = 20.4 Hz) ppm. HR LC-MS: Calcd: [M-Br]⁺ = 782.9620, found: m/z = 782.9609.

Figure S26. ³¹P {¹H} NMR (162 MHz, CDCl₃, 298K) of T6-Br.

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

Figure S27. ¹³C NMR (101 MHz, CDCl₃, 298K) of T6-Br.

-122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 -170 -172 -174 -176 -178 fl (ppm)

Figure S28. $^{19}\mathrm{F}$ {¹H} NMR (471 MHz, CDCl₃, 298K) of T6-Br.

Scheme S10. Synthesis of D4.

Compound D4.

Under N₂ atmosphere, Compound **D1** (442 mg, 1.01 mmol) was dissolved in 50 ml anhydrous CH₂Cl₂, and Methyl trifluoromethanesulfate (182 mg, 1.11 mmol) was added. The solution was stirred for 48h at room temperature. Then the solvent of mixture was removed under vacuum, the residue was purified by silica gel column chromatography (MeOH/CH₂Cl₂ 2:98). Yield: 443.4 mg of white powder (73 %). No melting point was observed due to the amorphous nature of **D4** (T_g = 31.6 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.94 – 7.80 (m, 5H), 7.72 (td, *J* = 7.8, 3.8 Hz, 2H), 7.46 – 7.42 (m, 2H), 7.42 – 7.39 (m, 2H), 7.37 – 7.32 (m, 2H), 7.08 (dd, *J* = 5.1, 3.6 Hz, 2H), 3.06 (d, *J* = 13.7 Hz, 3H) ppm.¹³C NMR (101 MHz, CDCl₃) δ 151.6 (d, J = 6.1 Hz), 143.0 (d, J = 10.1 Hz), 135.8 (d, J = 3.0 Hz), 134.1, 132.4 (d, J = 12.1 Hz), 130.5 (d, J = 14.1 Hz), 128.7, 128.1, 127.1, 126.4 (d, J = 15.1 Hz), 120.9 (d, J = 322.2 Hz), 120.7 (d, J = 96.0 Hz), 12.6 (d, J = 61.6 Hz) ppm.³¹P {¹H} NMR (202 MHz, CDCl₃) δ 8.6 ppm.¹⁹F {¹H} NMR (471 MHz, CDCl₃) δ -78.2 ppm. HR LC-MS: Calcd: [M-OTf]⁺ = 453.0024, found: m/z = 453.0021.

Figure S30. ³¹P {¹H} NMR (202 MHz, CDCl₃, 298K) of D4.

50 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -3C fl (ppm)

Figure S32. ¹⁹F {¹H} NMR (471 MHz, CDCl₃, 298K) of D4.

Scheme S11. Synthesis of T5.

Compound T5.

Under N₂ atmosphere, Compound **T1** (310 mg, 0.515 mmol) was dissolved in 50 ml anhydrous CH₂Cl₂, and Methyl trifluoromethanesulfate (93 mg, 0.567 mmol) was added. The solution was stirred for 48h at room temperature. Then the solvent of mixture was removed under vacuum, the residue was purified by silica gel column chromatography (MeOH/CH₂Cl₂ 2:98). Yield: 131.4 mg of yellow powder (33 %). No melting point was observed due to the amorphous nature of **T5** (T_g = 61.7 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.88 (m, 3H), 7.88 – 7.81 (m, 2H), 7.73 (td, *J* = 7.7, 3.7 Hz, 2H), 7.42 (dd, *J* = 4.0, 2.3 Hz, 2H), 7.29 (dd, *J* = 5.1, 1.2 Hz, 2H), 7.23 (dd, *J* = 3.7, 1.2 Hz, 2H), 7.13 (d, *J* = 3.9 Hz, 2H), 7.05 (dd, *J* = 5.1, 3.6 Hz, 2H), 3.06 (d, *J* = 13.7 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 151.3 (d, J = 6.1 Hz), 143.1 (d, J = 11.1 Hz), 140.1, 136.1, 135.8 (d, J = 3.0 Hz), 132.6, 132.5, 130.6 (d, J = 14.1 Hz), 128.3, 128.0, 126.1 (d, J = 14.1 Hz), 125.8, 124.9, 124.8, 120.9 (d, J = 322.2 Hz), 120.6 (d, J = 96.0 Hz), 114.7 (d, J = 109.1 Hz), 12.7 (d, J = 61.6 Hz) ppm.³¹P {¹H} NMR (202 MHz, CDCl₃) δ 8.5 ppm.¹⁹F {¹H} NMR (471 MHz, CDCl₃) δ -78.2 ppm. HR LC-MS: Calcd: [M-OTf]⁺ = 616.9778, found: m/z = 616.9775.

Figure S33. ¹H NMR (400 MHz, CDCl₃, 298K) of T5.

Figure S34. ³¹P {¹H} NMR (202 MHz, CDCl₃, 298K) of T5.

50 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -30 fl (ppm)

Figure S36. ¹⁹F {¹H} NMR (471 MHz, CDCl₃, 298K) of T5.

Scheme S12. Synthesis of D5.

Compound D5.

Under N₂ atmosphere, Compound **D5-Br** (155 mg, 0.222 mmol) was dissolved in 10 ml anhydrous CH₂Cl₂, and Silver trifluoromethanesulfonate (72.7 mg, 0.283 mmol) was added. The solution was stirred for overnight at room temperature. Then the solvent of mixture was removed under vacuum, the residue was purified by silica gel column chromatography (MeOH/CH₂Cl₂ 2:98), Yield: 125.5 mg of pale-yellow powder (73%). No melting point was observed due to the amorphous nature of **D5** ($T_g = 47.4 \text{ °C}$). ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 7.97 (m, 2H), 7.94 – 7.83 (m, 3H), 7.80 – 7.68 (m, 2H), 7.48 (t, *J* = 3.2 Hz, 2H), 7.44 (d, *J* = 5.1 Hz, 2H), 7.34 (d, *J* = 3.6 Hz, 2H), 7.10 (t, *J* = 4.4 Hz, 2H), 5.11 (d, *J* = 13.9 Hz, 2H) ppm.¹³C NMR (101 MHz, CDCl₃) δ 153.0 (d, J = 6.1 Hz), 144.4 (d, J = 10.1 Hz), 136.4 (d, J = 3.0 Hz), 133.9 (d, J = 1.01 Hz), 133.2 (d, J = 12.1 Hz), 128.8, 128.6, 127.5, 126.7 (d, J = 18.2 Hz), 120.9 (d, J = 321.2 Hz), 118.5 (d, J = 92.9 Hz), 111.6 (d, J = 108.1 Hz), 23.4 (d, J = 57.6 Hz) ppm.³¹P {¹H} NMR (162 MHz, CDCl₃) δ 9.1 ppm.¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -78.4, -136.6 (d, *J* = 20.6 Hz), -150.0 – 150.2 (m), -159.3 (d, *J* = 20.0 Hz) ppm. HR LC-MS: Calcd: [M-OTf]⁺ = 618.9866, found: m/z = 618.9863.

Figure S37. ¹H NMR (400 MHz, CDCl₃, 298K) of D5.

--9.09

-30

-40

-50

-60

-70

20

10

ò

-10

-20

50

140

130

120

110

100

90

80

70

60

Figure S40. ¹⁹F {¹H} NMR (376 MHz, CDCl₃, 298K) of D5.

AgOTf anhydrous CH₂Cl₂, RT, Overnight

Scheme S13. Synthesis of T6.

Compound T6.

Under N₂ atmosphere, Compound **T6-Br** (96 mg, 0.111 mmol) was dissolved in 20 ml anhydrous CH₂Cl₂, and Silver trifluoromethanesulfonate (68.7 mg, 0.267 mmol) was added. The solution was stirred for overnight at room temperature. Then the solvent of mixture was removed under vacuum, the residue was purified by silica gel column chromatography (Acetone/CH₂Cl₂ 3:17), Yield: 98 mg of yellow powder (94%). No melting point was observed due to the amorphous nature of **T6** (T_g = 61.9 °C).¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, J = 8.3, 4.1 Hz, 2H), 7.91 – 7.83 (m, 3H), 7.74 (td, J = 7.7, 3.9 Hz, 2H), 7.49 – 7.44 (m, 2H), 7.31 (dd, J = 5.1, 1.2 Hz, 2H), 7.26 – 7.22 (m, 2H), 7.14 (d, J = 3.9 Hz, 2H), 7.06 (dd, J = 5.2, 3.7 Hz, 2H), 5.09 (d, J = 13.9 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 152.4 (d, J = 6.1 Hz), 144.3 (d, J = 10.1 Hz), 140.5, 136.4, 135.9, 133.0(d, J = 11.1 Hz), 132.0 (d, J = 2.02 Hz), 130.7, 130.5, 128.2, 126.3 (d, J = 15.1Hz), 125.9, 124.9, 124.8, 120.8 (d, J = 350.5 Hz), 118.2 (d, J = 92.9 Hz), 111.0 (d, J = 108.1 Hz), 23.4(d, J = 57.6 Hz) ppm.³¹P {¹H} NMR (162 MHz, CDCl₃) δ 8.9 ppm.¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -78.34, -136.7 (db, J = 18.8 Hz), -150.0 – -150.1 (m), -159.2 – -159.4 (m) pm. HR LC-MS: Calcd: [M-OTf]⁺ = 782.9620, found: m/z = 782.9608.

Figure S41. ¹H NMR (500 MHz, CDCl₃, 298K) of T6.

Figure S42. ³¹P {¹H} NMR (162 MHz, CDCl₃, 298K) of T6.

10

0

20

-10 -20 -50 -60

50

60

120 110 100

152.45 144.36 144.36 144.36 135.87 144.45 135.87 135.85 131.97 132.99 131.97 132.99 131.97 132.99 1112.55 11112.55 11

23.67
23.10

Figure S44. ^{19}F { ^{1}H } NMR (376 MHz, CDCl₃, 298K) of T6.

Figure S45. UV-vis spectra of T3 in DCM.

Figure S46. UV-vis spectra of T4 in DCM.

Figure S47. UV-vis spectra of a) terTh, b) T1, c) T2, d) T5, and e) T6 in toluene (black), DCM (red) and acetonitrile (blue).

1 9				
Compound	λ_{abs} [nm] ^a	λ_{em} [nm] ^a	Ф [%] ^а	$\tau_{\rm PL}$ [ns]
				$\tau : 150(0.8)$
(T1	255	407 400 459	()	
terIn	333	407, 429, 458	6.0	$ au_2: 230(0.2)$
				$ au_{\text{average}}$: 170
				$ au_1$: 40 (0.17)
T1	370	431, 454, 485	4.9	$ au_2$: 170 (0.83)
				$ au_{\text{average}}$: 150
				$ au_1$: 100 (0.11)
Τ2	370	409, 429, 450	7.6	$ au_2$: 180 (0.89)
				$ au_{\text{average}}$: 170
				$ au_1$: 180 (0.46)
Т5	392	480	30.4	$ au_2$: 950 (0.54)
				$ au_{\text{average}}$: 590
				$ au_1: 450 \ (0.34)$
Т6	397	487	41.3	$ au_2$: 450 (0.66)
				τ_{average} : 1110

Table S1. Photophysical data of P-terThs in toluene

Compound	$\lambda_{ m abs} \ [nm]^{ m a}$	$\begin{array}{c} \lambda_{em} \\ [nm]^a \end{array}$	Φ [%] ^a	$ au_{ m PL}$ [ps]
terTh	353	407, 428, 458	1.5	$\tau_{1}: 0.160(0.95) \\ \tau_{2}: 0.350(0.05) \\ \tau_{\text{average}}: 170$
T1	370	432, 455	0	$ au_1: 110 \ au_2: 200(0.75) \ au_{average}: 180 ext{}$
Т2	377	434, 454	8.7	$ au_1: 110 (0.11) \ au_2: 190 (0.89) \ au_{average}: 180$
Т3	381	436, 456	9.0	$\tau_{1}: 110 (0.21) \\ \tau_{2}: 210 (0.79) \\ \tau_{average}: 190$
T4	381	437, 457	0	$\tau_{1}: 20 (0.98) \\ \tau_{2}: 190 (0.02) \\ \tau_{average}: 30$
Т5	398	492	69.5	$ \begin{aligned} \overline{\tau_1: 740 (0.26)} \\ \overline{\tau_2: 1890 (0.74)} \\ \overline{\tau_{average}: 1590} \end{aligned} $
Т6	408	505	71.2	$\tau_{1}: 1020 (0.15)$ $\tau_{2}: 2030 (0.85)$ $\tau_{average}: 1880$

Table S2. Photophysical data of P-terThs in DCM

Compound	λ_{abs}	λ_{em}	Φ	$ au_{ m PL}$
	[nm] ^a	[nm] ^a	[%] ^a	[ps]
terTh	353	405, 425, 450	12.4	$ au_1$: 150 (1.0)
	366	430, 450	0	$ au_1$: 150 (0.04)
Т1				$ au_2$: 380 (0.01)
11				<i>τ</i> ₃ : 10 (0.96)
				$ au_{\text{average}}$: 20
Т2	374	453	1.8	$ au_1: 60 \ (0.54)$
				$ au_2$: 330 (0.46)
				$ au_{\text{average}}$: 190
Т5	385	492	3.6	$ au_1$: 210 (0.11)
				$ au_2$: 350 (0.03)
				$ au_3$: 10 (0.86)
				$ au_{\text{average}}$: 40
Т6	388	507	0.3	$ au_1: 60 \ (0.68)$
				$ au_2$: 240 (0.32)
				τ ₃ : 1290 (0.0)
				$ au_{\mathrm{average}}$: 120

Table S3. Photophysical data of P-terThs in acetonitrile.

Compound	λ_{abs} $[nm]^a$	λ _{em} [nm]ª	Ф [%] ^a	τ _{PL} [ps]
D2	328	391	3.4	$ au_1$: 470 (0.03) $ au_2$: 900 (0.97) $ au_{average}$: 890
D5	353	423	32.5	$ au_1$: 1150 (1.0)

Table S4. Photophysical data of P-biThs in DCM.

Table S5. Photophysical data of P-biThs in toluene.

Compound	$\lambda_{ m abs}$	$\lambda_{ m em}$	Φ	$ au_{ m PL}$
	[nm]ª	[nm]ª	[%] ^a	[ps]
D2	327	384	35.66	$ au_1$: 730 (1.0)
				$ au_1$: 100 (0.61)
D5	338	420	9.55	$ au_2$: 860 (0.39)
				$ au_{\mathrm{average}}$: 400

 Table S6. Photophysical data of P-biThs in acetonitrile.

Compound	λ_{abs}	λ_{em}	Φ	$ au_{ m PL}$
	$[nm]^{a}$	[nm] ^a	[%] ^a	[ps]
				$ au_1: 30 \ (0.78)$
D2	324	393	1.86	$ au_2$: 320 (0.22)
				$ au_{\mathrm{average}}$: 90
D5	340	425	0.24	$ au_1: 20 \ (0.87)$
				$ au_2$: 260 (0.13)
				$ au_{\mathrm{average}}$: 50

Figure S48. Structure information of P-biThs in both ground state and excited state.

Figure S49. MOs of P-biThs in S₀.

Figure S50. MOs of P-biThs in S_{SBCT}^* .

Figure S51. DSC data of **D1** (red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min).

Figure S51. DSC data of **T1**(red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min, * means artifact).

Figure S51. DSC data of **D2** (red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min).

Figure S51. DSC data of **T2** (red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min).

Figure S51. DSC data of **D3** (red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min).

Figure S51. DSC data of **T3** (red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min, * means artifact).

Figure S51. DSC data of **T4** (red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min, * means artifact).

Figure S51. DSC data of **D5-Br** (red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min, * means artifact).

Figure S51. DSC data of **T6-Br** (red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min, * means artifact).

Figure S51. DSC data of **D4** (red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min).

Figure S51. DSC data of **T5** (red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min).

Figure S51. DSC data of **D5** (red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min).

Figure S51. DSC data of **T6** (red line: the 2nd heating, green line: the 1st cooling, heating/cooling rate: 10°C/min).

References:

S1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez C.; Pople, J. A. *Gaussian 03, Revision E.01, Gaussian Inc.*, Wallingford, CT, **2007**.