Supplementary Information: Influence of Uranyl Complexation on the Reaction Kinetics of the Dodecane Radical Cation with Used Nuclear Fuel Extraction Ligands (TBP, DEHBA, and DEH*i*BA)

Cristian Celis-Baros, Corey D. Pilgrim, Andrew R. Cook, Travis S. Grimes, Stephen P. Mezyk, and Gregory P. Horne

Kinect Figures

Fig. S1. Double-exponential fitting for RH⁺⁺ decays at 800 nm with $[UO_2(NO_3)_2(DEHBA)_2]$ in 0.5 M DCM/*n*-dodecane solution.

Fig. S2. Double-exponential fitting for RH⁺⁺ decays at 800 nm with $[UO_2(NO_3)_2(DEH/BA)_2]$ in 0.5 M DCM/*n*-dodecane solution.

Computational Figures and Tables

Table S1. Electronic structure calculation free energy (ΔG) values for the reaction of RH^{•+} with TBP, DEHBA, and DEH*i*BA for electron/hole transfer and proton transfer scenarios, without dispersion corrections in the geometries or energies.

Ligand	$\Delta G_{electron/hole transfer}$ (eV)	$\Delta G_{\text{proton transfer}}$ (eV)
ТВР	0.33	-0.43
DEHBA	-1.03	-0.61
DEH <i>i</i> BA	-1.01	-0.61

Fig. S3. Selected molecular orbitals of TBP (left panel) and the complexed uranyl compound (right panel).

Fig. S4. Selected molecular orbitals of DEHBA (left panel) and the complexed uranyl compound (right panel).

Fig. S5. Selected molecular orbitals of DEH*i*BA (left panel) and the complexed uranyl compound (right panel).

Fig. S6. Global electrophilic Fukui function (f^{-}) plots. The violet surfaces correspond to the regions where the Fukui function is negative while green surfaces to positive values. Uranium atoms are depicted in pink, carbon in grey, nitrogen in blue, sulfur in orange, and hydrogen in white.

	TDD	TDD++	[UO ₂ (NO	₃) ₂ (TBP) ₂]	[UO ₂ (NO ₃) ₂ (TBP) ₂]•+	
	IDP	IDP	TBP1	TBP2	TBP1	TBP2	
P-O _{TBP}	1.482	1.501	1.496	1.500	1.522	1.523	
P-OR1 _{TBP}	1.613	1.611	1.594	1.592	1.591	1.590	
P-OR2 _{TBP}	1.619	1.604	1.592	1.595	1.576	1.579	
P–OR3 _{TBP}	1.614	1.574	1.605	1.607	1.578	1.579	
P–OR _{avg}	1.615	1.596	1.597	1.598	1.582	1.583	
U–O _{tbp}	-	-	2.456	2.495	2.435	2.361	
U-O1 _{YL}	-	-	1.800 1.791		'91		
U–O2 _{YL}	-	-	1.795 1.786		/86		
U-01 _{NO3(a)}	-	-	2.536		2.536 2.601		601
U–O2 _{NO3(a)}	-	-	2.524		2.524 2.595		95
U-01 _{NO3(b)}	-	-	2.544		2.544 2.695		
U–O2 _{NO3(b)}	-	-	2.5	521	2.6	687	

Supplementary Information

	DEURA		[UO ₂ (NO ₃)	2(DEHBA)2]	[UO ₂ (NO ₃) ₂ (DEHBA) ₂]*+			
	DENDA	DENDA	DEHBA1	DEHBA2	DEHBA1	DEHBA2		
C=0	1.234	1.217	1.261 1.268		1.262	1.261		
N–C	1.383	1.468	1.359 1.355		1.376	1.376		
C–C _{pr}	1.532	1.510	1.516	1.514	1.509	1.509		
U–O _{dehba}	-	-	2.426	2.431	2.455	2.452		
U-O1 _{YL}	-	-	1.808		1.808 1.800			
U–O2 _{YL}	-	-	1.807		1.807 1.801		801	
U-01 _{NO3(a)}	-	-	2.533		2.533 2.529		529	
U-O2 _{NO3(a)}	-	-	2.531		2.531 2.533		533	
U-01 _{NO³(b)}	-	-	2.523		2.523 2.523		523	
U–O2 _{NO³(b)}	-	-	2.524		2.524		2.5	525

Table S3. Selected bond lengths of DEHBA-derived structures. All distances are given in Å.

Table S4. Selected bond lengths of DEH*i*BA-derived structures. All distances are given in Å.

			[UO ₂ (NO ₃) ₂	(DEH/BA) ₂]	[UO ₂ (NO ₃) ₂ (DEH <i>i</i> BA) ₂]**		
	DENIDA		DEH <i>i</i> BA1	DEH <i>i</i> BA2	DEH <i>i</i> BA1	DEH <i>i</i> BA2	
C=0	1.243	1.212	1.265	1.269	1.258	1.262	
N–C	1.385	1.493	1.356 1.357		1.378	1.380	
C–C _{ipr}	1.548	1.518	1.526	1.533	1.518	1.527	
U–O _{deh/ba}	-	-	2.429	2.425	2.446	2.448	
U-01 _{YL}	-	-	1.809		1.809 1.802		
U02 _{YL}	-	-	1.807		1.807 1.801		301
U–01 _{NO3(a)}	-	-	2.511		2.511 2.514		514
U–O2 _{NO³(a)}	-	-	2.515		2.515 2.52		525
U-01 _{NO³(b)}	-	-	2.543		2.543 2.527		527
U–O2 _{NO³(b)}	-	-	2.549		2.5	527	

Supplementary Information

		f_k^-			s_k^-		
	TPD	[UO₂(NO	₃) ₂ (TBP) ₂]	TPD	[UO ₂ (NO ₃) ₂ (TBP) ₂]		
	IDP	L1	L2	IDP	L1	L2	
O _{P=O}	0.136	0.016	0.018	0.430	0.131	0.147	
О _{ОВи} (1)	0.121	0.026	0.014	0.383	0.212	0.114	
О _{ОВи} (2)	0.106	0.031	0.029	0.335	0.253	0.237	
О _{ОВи} (3)	0.093	0.021	0.025	0.294	0.171	0.204	
P _{O=P}	0.032	0.019	0.020	0.101	0.155	0.163	
O _{yl}	-	0.031	0.032	-	0.253	0.261	
O _{NO3} (1)	-	0.067	0.063	-	0.539	0.506	
O _{NO3} (2)	-	0.066	0.059	-	0.531	0.482	
O _{NO3} (3)*	-	0.106	0.100	-	0.857	0.808	
N _{NO3}	-	0.021	0.019	-	0.171	0.155	

Table S5. Condensed electrophilic Fukui function and electrophilic softness values of key atoms in TBP and $[UO_2(NO_3)_2(TBP)_2]$. L1 and L2 refer to ligands (TBP, O_{yl} , or NO_3).

* O_{NO3} (3) corresponds to the nitrate's non-complexed oxygen atom.

Table S6. Condensed electrophilic Fukui function and electrophilic softness values of key atoms in DEHBA and $[UO_2(NO_3)_2(DEHBA)_2]$. L1 and L2 refer to ligands (DEHBA, O_{yl} , or NO_3).

		f_k^-	s_k^-				
		[UO ₂ (NO ₃) ₂ (DEHBA) ₂]		DEUDA	[UO ₂ (NO ₃) ₂ (DEHBA) ₂]		
	DENDA	L1	L2	DEHBA	L1	L2	
O _{C=0}	0.167	0.051	0.046	0.639	0.490	0.442	
C _{O=C}	0.121	0.008	0.008	0.383	0.077	0.077	
N _{DEHBA}	0.106	0.068	0.069	0.335	0.653	0.662	
C _{propyl}	0.093	-0.006	-0.006	0.294	-0.058	-0.058	
Ο _{γI}	-	0.016	0.021	-	0.154	0.202	
O _{NO3} (1)	-	0.007	0.014	-	0.067	0.134	
O _{NO3} (2)	-	0.000	0.015	-	0.000	0.144	
O _{NO3} (3)*	-	0.041	0.046	-	0.394	0.442	
N _{NO3}	-	0.006	0.007	-	0.058	0.067	

* O_{NO3} (3) corresponds to the nitrate's non-complexed oxygen atom.

		f_k^-		s_k^-		
		UO ₂ (DEH <i>i</i> BA) ₂ (NO ₃) ₂			UO₂(DEH <i>i</i> l	BA) ₂ (NO ₃) ₂
	DENIDA	L1	L2	DENIDA	L1	L2
O _{C=0}	0.171	0.049	0.048	0.658	0.482	0.472
C _{O=C}	0.121	0.005	0.008	0.039	0.059	0.079
N _{DEH<i>i</i>BA}	0.106	0.070	0.066	0.700	0.689	0.649
C _{propyl}	0.093	-0.006	-0.011	-0.070	-0.059	-0.108
O _{yl}	-	0.015	0.019	-	0.148	0.187
O _{NO3} (1)	-	0.015	0.005	-	0.148	0.049
O _{NO3} (2)	-	0.009	0.007	-	0.089	0.069
O _{NO3} (3)*	-	0.047	0.035	-	0.462	0.344
N _{NO3}	-	0.007	0.007	-	0.069	0.069

Table S7. Condensed electrophilic Fukui function and electrophilic softness values of key atoms in DEH*i*BA and $[UO_2(NO_3)_2(DEH$ *i* $BA)_2]$. L1 and L2 refer to ligands (DEH*i*BA, O_{γ_i} , or NO₃).

* O_{NO3} (3) corresponds to the nitrate's non-complexed oxygen atom.

Table S8. Composition of natural localized molecular orbitals (NLMOs) in terms of natural hybrid orbitals (NHOs). The selected

 NLMOs correspond to the most relevant for the chemical bond based on their natural localized bond order (BO) contributions

	[UO ₂ (NO ₃) ₂ (TBP) ₂]			[UO ₂ (NO ₃) ₂ (DEHBA) ₂]				[UO ₂ (NO ₃) ₂ (DEH <i>i</i> BA) ₂]	
	во	Туре	Composition	во	Туре	Composition	во	Туре	Composition
	0.44	π	22% U (38 6d + 62 5f) 78% O (2p)	0.43	π	22% U (38 6d + 62 5f) 78% O (2p)	0.43	π	22% U (38 6d + 62 5f) 78 O (2p)
°U–O _{yl}	0.44	π	22% U (39 6d + 61 5f) 78% O (2p)	0.43	π	22% U (39 6d + 61 5f) 78% O (2p)	0.43	π	22% U (39 6d + 61 5f) 78 O (2p)
	0.58	σ	29% U (18 6d + 82 5f) 70% O (2p)	0.57	σ	29% U (18 6d + 82 5f) 70% O (2p)	0.56	σ	29% U (18 6d + 82 5f) 70% O (2p)
au 0	0.07	σ	4% U (10 7s + 52 6d + 37 5f) 96 % TBP	0.15	σ	8% U (11 7s + 55 6d + 34 5f) 92 % DEHBA	0.15	σ	8% U (11 7s + 53 6d + 36 5f) 92 % DEHBA
-0-0L	0.07	σ	4% U (10 7s + 50 6d + 40 5f) 96 % TBP	0.05	π	2% U (5 7s + 37 6d + 58 5f) 98 % DEHBA	0.04	π	2% U (1 7s + 34 6d + 65 5f) 98 % DEHBA

^a Average values.