Supporting information

Prediction of Bimetal Embedded in Two-Dimensional Materials for CO₂ Reduction Electrocatalysis with a New Integrated Descriptor

Xin Cao, [‡] *Chongyang Chen,* [‡] *Yuxiang Min,* [‡] *Hao Yuan,* [‡] *Shiqian Chen,* [‡] *and Lai Xu*^{*} Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for

Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu

215123, China

Email: xulai15@suda.edu.cn

System	$\Delta G_{*COOH}(eV)$	$\Delta G_{HCOO}(eV)$	$\Delta G_{*HER}(eV)$
ScSc	0.794	-0.935	-0.264
MnMn	-0.109	-0.604	0.139
FeFe	-0.122	-0.572	0.008
VV	-0.256	-1.620	0.753
TiTi	0.107	-1.127	-0.030
TiNi	0.834	-0.847	-0.396
VNi	0.732	-0.885	-0.193
ScNi	-0.102	-0.274	0.239
MnNi	0.329	-0.220	-0.100
FeNi	0.144	-1.046	-0.016
ScCu	0.485	-0.928	0.087
TiCu	0.505	-0.972	0.547
FeCu	-0.308	-0.793	0.777
ScCo	1.141	-0.508	0.148
TiCo	0.852	-0.652	0.185
MnCo	0.205	-0.510	0.470
FeCo	-0.254	-0.068	0.490
ScFe	2.805	-0.327	-0.101
TiFe	0.805	-0.625	-0.014
VFe	-0.026	-1.381	-0.143
CrFe	-0.013	-1.079	-0.126
MnFe	0.084	-0.805	0.277
ScMn	0.426	-0.810	-0.152
TiMn	0.260	-1.266	-0.029
VMn	0.158	-1.198	0.011
CrMn	-0.135	-1.275	0.115
ScCr	-0.486	-1.518	0.040
TiCr	-0.030	-1.539	0.137
ScV	-0.363	-1.408	0.195
TiV	-0.060	-1.407	-0.520
ScTi	-0.390	-1.155	0.198

Table S1. Gibbs free energy changes for the step of $*CO_2 \rightarrow *COOH$ or H*COO, compared with HER.

Figure S1. Gibbs free energy changes for reduction of CO₂ to methanol (black), methane(red), ethane(green)and ethanol(sky-blue) for MnCo $(a\beta_{12}$ -B system.

Figure S2. Gibbs free energy changes for reduction of CO₂ to methane(red), for MnCo@ β_{12} -B system at pH=0(a), pH=1(b), pH=7(c), pH=13(d). The blue line represents the Gibbs free energy change under different applied voltages.

Figure S3. The side view of IS, TS, and FS structure and energy barrier diagram involved in the reaction $*CO + *CO \rightarrow O*C*CO$ for MnCo@ β_{12} -B system.

Figure S4. Gibbs free energy changes for reduction of CO_2 to methanol (black), methane(red), ethane(green) and ethanol(sky-blue) for VV@ β_{12} -B system.

Figure S5. Gibbs free energy changes for reduction of CO₂ to ethanol(sky-blue), for VV@ β_{12} -B system at pH=0(a), pH=1(b), pH=7(c), pH=13(d). The blue line represents the Gibbs free energy change under different applied voltages.

Figure S6. The side view of IS, TS, and FS structure and energy barrier diagram involved in the reaction $*CO + *CO \rightarrow O*C*CO$ for $VV@\beta_{12}$ -B system.

Figure S7. Schematic diagram of LASSO regression looking for descriptors.

А	В	spin moment (A, µB)	spin moment (B, µB)	Distance (Å)
Fe	Fe	1.11	1.07	2.56
Ni	Mn	-0.04	1.74	2.57
Mn	Co	1.85	0.07	2.59
Fe	Co	1.40	-0.05	2.55
Ti	Fe	0.21	1.63	3.08
Cr	Fe	1.04	1.51	2.77
Mn	Fe	1.32	1.74	2.62
Ti	Mn	0.24	2.14	2.96
V	Mn	0.26	2.03	2.78
Cr	Mn	1.36	2.09	2.77

Table S2. The distance between two transition metals and the spin moments of the transition metals A and B in the magnetic system.

Table S3. Possible pathways for electrochemical reduction of CO_2 . Limiting potentials(V) and overpotentials(V) of MnCo and VV system respectively. U_0 was obtained from the source.¹

Half-electrochemical thermodynamic reaction		$U_L/(V)$	$\eta/(\mathrm{V})$
$MnCo: CO_2(g) + 8H^+ + 8e^- = CH_4(g) + 2H_2O(l)$	0.16	-0.55	0.71
$MnCo: 2CO_2(l) + 12H^+ + 12e^- = CH_3CH_2OH(l) + 3H_2O(l)$	0.08	-1.22	1.30
$VV : CO_2(g) + 8H^+ + 8e^- = CH_4(g) + 2H_2O(l)$	0.16	-0.54	0.70
$VV : 2CO_2(l) + 12H^+ + 12e^- = CH_3CH_2OH(l) + 3H_2O(l)$	0.08	-0.53	0.61

Figure S8. The projected density of states of (a) *COOH and (b) *HCOO for MnCo@ β_{12} -B system.

Figure S9. The top view and the side view of net spin density of MnCo@ β_{12} -B system and *COCO for MnCo@ β_{12} -B system at an isosurface value of 5 × 10⁻³ e Å⁻³.

Figure S10. The top view and the side view of net spin density of VV@ β_{12} -B system and *COCO for VV@ β_{12} -B system at an isosurface value of 5 × 10⁻³ e Å⁻³.

Figure S11. The projected density of states of MnCo@ β_{12} -B system and *COCO for MnCo@ β_{12} -B system.

Figure S12. The projected density of states of VV@ β_{12} -B system and *COCO for VV@ β_{12} -B system.

1. A. J. Bard, R. Parsons and J. Jordan, Standard potentials in aqueous solutions, *CRC press*, **1985.**