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S1. GENERALIZED BLOCH THEOREM UNDER SCREW SYMMETRY

Under screw symmetry, a twisted structure could be written as,

Xλ,n = Rλ(Ω)X0,n + λT, (S1)

where X0,n represents the atoms inside the primitive repeating motif. Translation component T and rotation compo-
nent R with twist angle Ω constitute the screw operator Ŝ. Xλ,n is the nth atom inside the replica of the repeating
motif screwed λ times by screw operator Ŝ. To easily show the effect of Ŝ, we use cylindrical coordinates (r, θ, z) to
describe a position vector r and let z be the screw axis. For an arbitrary function f ,

Ŝλ
f(r, θ0, z0) = f(r, θ0 + λΩ, z0 + λ|T|), (S2)

where (r, θ0, z0) is the initial position vector before the operation of Ŝ.
The crystal one electron Hamiltonian is,

Ĥ = − h̄2

2m
∇2

r + V (r). (S3)

The Eq. (S1) indicates that the potential V (r) should also be invariant under helix boundary condition,

Ŝλ
V (r) = V (r). (S4)

This means the electronic Hamiltonian Ĥ is invariant under screw symmetry. Furthermore, we find

ŜλĤf(r, θ0, z0) = [− h̄2

2m
∇2

r,θ0+λΩ,z0+λ|T| + V (r, θ0 + λΩ, z0 + λ|T|)]f(r, θ0 + λΩ, z0 + λ|T|) = ĤŜλ
f(r, θ0, z0), (S5)

which means Ŝλ
and Ĥ commute with each other. Therefore, these two operators have the same eigenstates. Then

we could choose the eigenstate of Ĥ,

Ĥψ(r, θ0, z0) = Eψ(r, θ0, z0), (S6)

which is also the eigenstate of Ŝ,

Ŝψ(r, θ0, z0) = mψ(r, θ0, z0). (S7)

Note that it is very easy to verify,

Ŝλ1 Ŝλ2
ψ(r, θ0, z0) = Ŝλ2 Ŝλ1

ψ(r, θ0, z0) = ψ(r, θ0 + (λ1 + λ2)Ω, z0 + (λ1 + λ2)|T|) = mλ1+λ2ψ(r, θ0, z0), (S8)

where λ1 and λ2 are both integers. Considering Eq. (S8) and helix boundary condition, there should exist an integer
ξ, which makes

Ŝξ
ψ(r, θ0, z0) = ψ(r, θ0 + ξΩ, z0 + ξ|T|) = ψ(r, θ0, z0) = mξψ(r, θ0, z0). (S9)

Accordingly, we obtain the eigenvalue of operator Ŝ, m = exp(i2πN/ξ), where N is an integer. In order to make it
convenient for writing, we replace 2πN/ξ with k̃ and −π < k̃ ≤ π. Similar to q̃ for phonon (see manuscript), k̃ can be
regarded as helical quantum number for electron. Now we can find the eigenstate ψ satisfies the following relation,

Ŝλ
ψ(r, θ0, z0) = ψ(r, θ0 + λΩ, z0 + λ|T|) = exp(ik̃λ)ψ(r, θ0, z0), (S10)

which is the Bloch theory under screw symmetry, i.e., generalized Bloch theorem mentioned in the manuscript.
In the tight-binding approach under translational periodic boundary condition, we could represent ψ by a linear

combination of atomic orbitals centered at each atom in a primitive cell. In the case of helix boundary condition, the
atomic orbitals could be used as basis functions only when they are rotated to the same orientation with the repeating
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primitive motif, which are referred to as symmetry-adapted orbitals. With these symmetry-adapted orbitals as basis,
similar to the standard Bloch wave functions, we write the generalized Bloch wave function as,

ψn,α(k̃, r) =
1√
2Nh

Nh−1∑
λ=−Nh

exp(ik̃λ)
∑
α′

Oαα′(λΩ)φα′(r − Xλ,n), (S11)

where φα′(r − Xλ,n) refers to the local atomic orbital α′ on atom n in the primitive cell rotated by λ times. α runs
over all the orbitals of single atom and n runs over all the N atoms inside the primitive motif. Nh is an integer,
indicating the times of helical operation acting on atomic orbitals. Oαα′ is the matrix elements of O, rotating the
local atomic orbitals to construct symmetry-adapted basis functions, i.e.,

∑
α′ Oαα′(λΩ)φα′(r − Xλ,n). Let z be the

screw axis and Eq. (S11) would be more clear in matrix form. For materials only with s and p (px, py, pz) orbitals,
ψn,s(k̃, r)
ψn,px

(k̃, r)
ψn,py (k̃, r)
ψn,pz

(k̃, r)

 =
1√
2Nh

Nh−1∑
λ=−Nh

exp(ik̃λ)


1 0 0 0
0 cos(λΩ) −sin(λΩ) 0
0 sin(λΩ) cos(λΩ) 0
0 0 0 1



φs(r − Xλ,n)
φpx

(r − Xλ,n)
φpy (r − Xλ,n)
φpz (r − Xλ,n)

 . (S12)

For materials with d (dx2−y2 , dxy, dzx, dyz, d3z2−r2) orbitals, Eq. (S11) should also contains,
ψn,dx2−y2 (k̃, r)
ψn,dxy

(k̃, r)
ψn,dzx(k̃, r)
ψn,dyz

(k̃, r)
ψn,d3z2−r2

(k̃, r)

 =
1√
2Nh

Nh−1∑
λ=−Nh

exp(ik̃λ)


cos(2λΩ) −sin(2λΩ) 0 0 0
sin(2λΩ) cos(2λΩ) 0 0 0

0 0 cos(λΩ) −sin(λΩ) 0
0 0 sin(λΩ) cos(λΩ) 0
0 0 0 0 1



φdx2−y2 (r − Xλ,n)

φdxy
(r − Xλ,n)

φdzx(r − Xλ,n)
φdyz (r − Xλ,n)

φd3z2−r2
(r − Xλ,n)

 .
(S13)

As the eigenfunction of Ŝ and Ĥ, ψn,α(k̃, r) forms a complete basis set involving only the N atoms in the primitive
motif. Now we can write the one-electron wave function Ψ as,

Ψ(k̃, r) =
∑
n,α

Cn,α(k̃)ψn,α(k̃, r), (S14)

which satisfies the following characteristic equation,

H(k̃) · Cm(k̃) = Em(k̃)S(k̃) · Cm(k̃). (S15)

The eigenvector C in Eq. (S15) is composed of the expansion coefficients C in Eq. (S14). Em(k̃) denotes electronic
energies at a specific helical quantum number k̃ with m = 1, 2, ...Nα and Nα is the total number of atomic orbitals
in a primitive motif. To solve Eq. (S15), we should also know the elements of Hamiltonian matrix H and overlap
integral matrix S. The element of Hamiltonian matrix H is,

Hnn′,αα′(k̃) =

∫
ψ∗
n,α(k̃, r)Hψn′,α′(k̃, r)d3r =

Nh−1∑
λ=−Nh

exp(ik̃λ)
∑
α′′

tnn′,αα′′Oα′′α′(λΩ), (S16)

where,

tnn′,αα′′ =

∫
φ∗
α(r − X0,n)Hφα′′(r − Xλ,n′)d3r. (S17)

When n = n′, α = α′′, and λ = 0, tnn′,αα′′ becomes

tnn,αα =

∫
φ∗
α(r − X0,n)Hφα(r − X0,n)d

3r = ϵn,α, (S18)

which is the on-site energy of the α orbital of atom n. The element of overlap integral matrix S is

Snn′,αα′(k̃) =

∫
ψ∗
n,α(k̃, r)ψn′,α′(k̃, r)d3r =

Nh−1∑
λ=−Nh

exp(ik̃λ)
∑
α′′

snn′,αα′′Oα′′α′(λΩ), (S19)
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where,

snn′,αα′′ =

∫
φ∗
α(r − X0,n)φα′′(r − Xλ,n′)d3r. (S20)

When n = n′, α = α′′, and λ = 0, snn′,αα′′ becomes

snn,αα =

∫
φ∗
α(r − X0,n)φα(r − X0,n)d

3r = 1, (S21)

indicating the overlap integral between an electron and itself is 1. Up to now, the hopping tnn′,αα′′ , on-site energy
ϵn,α and overlap snn′,αα′′ of various elements have been parameterized by carrying out first-principles calculation.
The quantities of hopping and overlap terms only depend on the distance between atoms at X0,n and Xλ,n′ .

Based on the above formulas, we can calculate the electronic structure of materials under screw symmetry within
the framework of density-functional tight-binding (DFTB) theory [1, 2]. Without considering spins, the total energy
Etot is written as,

Etot =
∑
k̃

nocc∑
m=1

Em(k̃) +
1

2

∑
n,n′,n̸=n′

U(rnn′). (S22)

The first term in Eq. (S22) is band structure energy EB, which comprises electronic energies of all the occupied states.
rnn′ is the distance between atom n and n′ and U(rnn′) is the repulsive energy between these two atoms. Note that
U(rnn′) between different elements has been parametrized in DFTB method. In addition, the Hellmann-Feynman
force acting on the atom n (located at Xn) can be obtained,

Fn = −∂EB
∂Xn

= −
∑
k̃

nocc∑
m=1

[C†
m(k̃) · ∂H(k̃)

∂Xn
· Cm(k̃)− Em(k̃)C†

m(k̃) · ∂S(k̃)
∂Xn

· Cm(k̃)]. (S23)

The matrix elements of derivations in Eq. (S23) are

∂Hnn′,αα′(k̃)

∂Xn
=

1

2Nh

Nh−1∑
λ=−Nh

exp(ik̃λ)
∑
α′′

∂tnn′,αα′′

∂Xn
Oα′′α′(λΩ), (S24)

and

∂Snn′,αα′(k̃)

∂Xn
=

1

2Nh

Nh−1∑
λ=−Nh

exp(ik̃λ)
∑
α′′

∂snn′,αα′′

∂Xn
Oα′′α′(λΩ). (S25)

Note that the generalized Bloch theorem [3–5] has been implemented in two packages: DFTB+ [6] and Trocadero [7],
which are both based on DFTB theory [1, 2]. Having obtained total energies and Hellmann-Feynman forces, we can
carry out phonon calculations which have been discussed in details in the manuscript.
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S2. PHONON PROPERTIES OF TWISTED ZIGZAG GRAPHENE NANORIBBONS

The phonon properties of twisted zigzag GNRs with the width of 1.9 nm (Figs. S1-S3) and 2.8 nm (Figs. S4-S5)
are shown as follows. These results show that twisting can effectively decrease phonon group velocities and indicate
the reduced lattice thermal conductivity of zigzag GNRs, which are in agreement with the results of twisted armchair
GNRs in the manuscript.

FIG. S1. (a) The relaxed structure of a 1.9-nm-wide zigzag GNR at twist rate γ = 35◦/nm. The edges of GNR are hydrogenated.
Carbon atoms and hydrogen atoms are shown in black and red, respectively. The width is along the x direction, and the
translation vector is along the y direction. Green atoms indicate the primitive motif under screw symmetry. (b) Tensile strain
ϵyy versus x calculated via DFTB method based on screw symmetry and the continuum model (CM) for the twisted GNR in
(a).

FIG. S2. (a) Phonon dispersions of 1.9-nm-wide zigzag GNRs at twist rates γ = 0, γ = 15◦/nm, γ = 25◦/nm, and γ = 35◦/nm
(from left to right). (b) Phonon density of state (PDOS) (left) and phonon group velocities vg (right) calculated using the
phonon dispersions in (a).
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FIG. S3. Relative heat capacity CV/C
0
V versus temperature T for 1.9-nm-wide zigzag GNRs at twist rates γ = 0, γ = 15◦/nm,

γ = 25◦/nm, and γ = 35◦/nm. C0
V denotes the heat capacity of a strain-free GNR at T = 300 K.

FIG. S4. (a) Phonon dispersions of 2.8-nm-wide zigzag GNRs at twist rates γ = 0, γ = 12◦/nm, and γ = 24◦/nm (from left to
right). (b) Phonon group velocities vg calculated using the phonon dispersions in (a).
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FIG. S5. Relative heat capacity CV/C
0
V versus temperature T for 2.8-nm-wide zigzag GNRs at twist rates γ = 0, γ = 12◦/nm,

and γ = 24◦/nm. C0
V denotes the heat capacity of a strain-free GNR at T = 300 K.
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