Design and Engineering of a Dual-Mode Absorption/Emission Molecular Switch for All-Optical Encryption

Aaron D. Erlich, Nicholas P. Dogantzis, Lara Al Nubani, Lavinia A. Trifoi, Gregory K. Hodgson and Stefania Impellizzeri^{*}

Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada M5B 2K3. Corresponding Email: <u>simpellizzeri@ryerson.ca</u>

Content	Page
Figure S1. Evolution of the absorbance of RZ before and after irradiation at 525 nm	S2
Figure S2. HPLC analysis of RZ before and after irradiation at 525 nm	S2
Figure S3. Absorption of RZ before and after irradiation at 525 nm with 3 eq. NH_2OH	S 3
Figure S4. Absorption and emission of 2NB-RZ before and after UVA irradiation	S4
Figure S5. Absorption of RZ before and after irradiation at 365 nm with 3000 eq. NH_2OH	S5
Materials and Methods	S6
Synthetic Protocols	S6
Figure S6. ¹ H NMR spectrum of 2NB-RZ	S8
Figure S7. ¹³ C NMR spectrum of 2NB-RZ	S9
Figure S8. ¹ H NMR spectrum of 2NB-RF	S10
Figure S9. ¹³ C NMR spectrum of 2NB-RF	S11

Figure S1. Evolution of the absorbance recorded at 602 nm of an aqueous solution of **RZ** (18 μ M, 20 °C) before and after irradiation at 525 nm (0 – 30 min, 5 min irradiation intervals) in the presence of 3000 (filled dots) or 3 (empty dots) equivalents of NH₂OH.

Figure S2. HPLC chromatograms of a solution of **RZ** (20 °C, NH₂OH 3000 eq.) before (blue trace) and after (pink trace) irradiation at 525 nm. The green trace is a mixture of commercial **RZ** and **RF** standards.

Figure S3. Absorption spectra of an aqueous solution of **RZ** (18 μ M, 20 °C, NH₂OH 3 eq.) before and after irradiation at 525 nm (0 – 30 min, 5 min irradiation intervals).

Figure S4. Absorption (top panel) and emission (bottom panel, $\lambda_{Ex} = 550$ nm) spectra of a solution of **2NB-RZ** (18 μ M, 20 °C, CH₃OH, NH₂OH 3000 eq.) before and after irradiation at 365 nm (0 – 30 min, 5 min irradiation intervals).

Figure S5. Absorption spectra of an aqueous solution of **RZ** (25 μ M, 20 °C, NH₂OH 3000 eq.) before and after irradiation at 365 nm (0 – 30 min).

Materials and Methods

Chemicals were purchased from Sigma-Aldrich, Fisher Scientific and ACP Chemicals. Solvents were purchased from ACP Chemicals. N,N'-dimethylformamide (DMF) was dried under nitrogen with 3Å molecular sieves. All other reagents were used as received. Ultrapure deionized water (Milli Ω , 18.2 M Ω) was obtained from a Millipore Purification System. Reactions were monitored by thin layer chromatography using aluminum backed sheets coated with 200 µm silica (60, F254). SiliaFlash® P60, 40-63 mm (230-400 mesh) silica gel from SiliCycle was used for purification of compounds by column chromatography. NMR spectra were collected at room temperature with a Bruker Avance 400 spectrometer. Steady-state absorption spectra were recorded with an Agilent Cary 60 UV-visible spectrometer, using quartz cells with a path length of 1 cm. Steady-state emission spectra were recorded with an Agilent Cary Eclipse spectrometer. FTIR Diamond ATR spectra were recorded with a Cary 630 spectrometer by Agilent Technologies. Electrospray Ionization Mass Spectrometry (ESI-MS) was performed using an Advion Expression compact mass spectrometer. Illumination at 365 nm was done using a laboratory TLC lamp (Mineralight UVGL 25, 0.4 mW cm⁻²). Illumination at 525 nm was performed using an in-house designed illumination setup consisting of a set of three light-emitting diodes (LEDs, LEDEngin LZ4-00G108 green) each connected to a heat sink and diaphragm-based active cooling system (Nuventix SynJet). A DC Power Supply provided a current of 700 mA. According to manufacturer specifications these conditions deliver an average radiant flux of 3.3 W per LED. The temperature of the irradiated solution is 21.2 °C, recorded using a thermocouple. Absorption and emission spectra were recorded immediately after irradiation. HPLC was conducted using an Agilent 1260 Infinity system consisting of a quat pump with a photodiode array detector. 50 µL samples were injected into a Fisher Scientific Acclaim 120 C18 column (120Å beads, 5 µm pore size, 2.1 × 250 mm). Samples eluted isocratically using a phosphate buffer (pH 6.8)-acetonitrile-methanol solvent system (52%:3%:45% v/v). The flow rate was kept at 0.4 mL/min. The products were monitored at 600 nm.

Synthetic Protocols

Synthesis of 2NB-RZ. To a clean, oven-dried 100 mL two-necked round-bottom flask equipped with a magnetic stir bar, 10 mL of dry DMF, resazurin sodium salt (252.6 mg, 1 mmol) and K₂CO₃ (277.7 mg, 2 mmol) were added. The flask was sealed and purged with N₂ for 15 min. In a separate flask, 331.8 mg (1.5 mmol) of 2-nitrobenzyl bromide were dissolved in 2 mL of dry DMF and sonicated until all solid was dissolved. The 2-nitrobenzyl bromide solution was added dropwise to the solution containing resazurin over the course of 20 minutes. The resulting solution was stirred for 1 week at room temperature under N₂. The reaction mixture was precipitated using 100 mL of cold CH₃OH, vacuum filtered and washed three times with 10 mL of cold CH₃OH affording **2NB-RZ** (87%) as a rust coloured solid. ¹H NMR (400 MHz, CDCl₃): δ 8.24 (d,1H), 8.20 (d, 1H), 8.05 (d, 1H), 7.83 (d, 1H), 7.74 (t, 1H), 7.58 (t, 1H), 7.07 (dd, 1H), 6.98 (d, 1H), 6.77 (dd, 1H), 6.29 (d, 1H), 5.63 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 185.0, 162.6, 152.7, 148.8, 147.0, 134.3, 132.9, 131.7, 131.2, 129.2, 128.4, 125.5, 124.9, 122.8, 122.2, 113.8, 105.8, 101.8, 67.9. FTIR-ATR: 3080, 2922 cm⁻¹ (v_s, C–H); 1728 cm⁻¹ (v_s, C=O); 1587, 1416 cm⁻¹ (v_s, C=C); 1520, 1345 cm⁻¹ (v_s, N=O); 1470 cm⁻¹ (v_s, N–O); 1282 cm⁻¹ (v_s, C–N aromatic); 1121, 1099 cm⁻¹ (v_s, C–O).

Synthesis of 2NB-RF. To a clean and oven-dried two-necked 100 mL round bottom flask equipped with a magnetic stir bar, resorufin sodium salt (235 mg, 1 mmol) and K_2CO_3 (691 mg, 5 mmol) were dissolved in acetone (65 mL). 2-nitrobenzyl bromide (216 mg, 1 mmol) was added to the flask, which was then attached to a reflux condenser and degassed for 15 min under N₂ atmosphere. The reaction was refluxed

overnight under N₂. The crude mixture was concentrated under reduced pressure and dissolved in CH₂Cl₂ (20 mL). The mixture was extracted first with 0.1 M NaOH (3×20 mL), followed by a wash with brine (20 mL). The organic phases were combined, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude compound was purified by column chromatography [SiO₂:Hexanes/EtOAc 1:1 (v/v)] to yield **2NB-RF** (73%) as an orange solid. ESI-MS: *m/z* = 349.2 [M]⁺; ¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, 1H), 7.86-7.84 (d, 1H), 7.77-7.69 (m, 2H), 7.58-7.52 (m, 1H), 7.43 (d, 1H), 7.07-7.04 (d, 1H), 6.92 (s, 1H), 6.86-6.83 (d, 1H), 6.33 (s, 1H), 5.61 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 186.4, 162.8, 149.7, 146.9, 146.2, 145.6, 134.8, 134.5, 134.2, 132.5, 132.2, 131.8, 129.0, 128.4, 125.4, 113.9, 106.9, 101.4, 67.7. FTIR-ATR: 3082, 2918 cm⁻¹ (v_s, C–H); 1718 cm⁻¹ (v_s, C=O); 1647, 1438 cm⁻¹ (v_s, C=C); 1521, 1338 cm⁻¹ (v_s, N=O); 1502 cm⁻¹ (v_s, N–O); 1248 cm⁻¹ (v_s, C–N aromatic); 1095, 1017 cm⁻¹ (v_s, C–O).

Figure S6. ¹H NMR spectrum (CDCl₃, 20 °C, 400 MHz) of 2NB-RZ.

Figure S7. ¹³C NMR spectrum (CDCl₃, 20 °C, 100 MHz) of **2NB-RZ**.

Figure S8. ¹H NMR spectrum (CDCl₃, 20 °C, 400 MHz) of 2NB-RF.

Figure S9. ¹³C NMR spectrum (CDCl₃, 20 °C, 100 MHz) of **2NB-RF**.