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S1. Sample Characterization
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Figure S1. XRD pattern of the as-received calcium
sulfate hemihydrate sample.

—_
=
Z 2 e
3 H E .
2 S g
£ ] H =
3= ey | =
S = @] -
172) = L (73] 5
[=} (3] o
E B T
e - C‘)
o o=
' 1 | L L | L L
40 30 20 18 16 14 12 10

wavenumber / 107 ¢cm™!

Figure S2. FT-IR spectrum of the as-received calcium
sulfate hemihydrate sample.
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Figure S3. SEM images of the sample partlcle (a)
particle shape and (b) particle surface.
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Figure S4. EDX spectrum of the calcium sulfate
hemihydrate sample.

S2. Thermal Behavior
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Figure S5. Results of the HT-XRD performed in the
isothermal heating program mode at 383 K in a flow of
dry N2 gas: (a) changes in the XRD pattern with heating
time, (b) XRD pattern recorded in the duration of 275—
300 min, and (c) changes in the crystallite sizes of the
reactant (B-CaSO4(1/2)H20) and product (y-CaSO.)
during the thermal dehydration process.
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Figure S6. Influence of the sample mass (mo) on the
TG-DTG curves for the thermal dehydration of CS-HH
in an open pan, recorded at a # of 5 K min~t in a flow
of dry N2 gas (gv = 80 cm® min™?).
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Figure S7. Comparison of TG-DTG curves for the
thermal dehydration of CS-HH (mo = approximately
10.0 mg) in open and lidded pans, recorded at a 5 of 5
K mint in a flow of dry N gas (qv = 80 cm® min™?).
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S3. Formal Kinetic Analysis
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Figure S8. Comparison of the Friedman plots at o = 0.5
for the thermal dehydration of CS-HH in open and
lidded pans.

3.0 3.2

<

Z

3

= :
R 2
SR R

r~ A QOpen pan
E 0.3 1 (Nonisothermal + CRTA) %
~ ©  Open pan (Isothermal) | ]
O Lidded pan
OO T T T T T T
0.0 0.2 04 0.6 0.8 1.0

Fractional reaction &

Figure S9. Comparison of the experimental master
plots, normalized with reference to the (da/d6) value at
o = 0.5, for the thermal dehydration of CS-HH in open
and lidded pans.



Supplementary Information
S4. Physico-Geometrical Kinetic Modeling

Table S1. Optimized rate constants based on the SR-PBR(1) model for the thermal dehydration of CS—HH in open
pan and lidded pans

. o —1 RZ, a
Sampling T/K ksr /s kesr() / S differential Integral
Open pan 323.1 2.865 x10# 4.461 x10°° 0.9882 0.9977
325.0 7.395 x10* 6.099 x10° 0.9849 0.9987
327.0 1.022 x10°3 8.158 x10° 0.9793 0.9971
329.0 2.294 x10°2 1.049 x10* 0.9621 0.9984
330.9 5.634 x10°3 1.568 x10* 0.9628 0.9987
333.0 9.940 x10°3 1.777 x10* 0.9865 0.9990
Lidded pan 323.1 9.799 x10* 4.854 x10° 0.9769 0.9987
325.1 1.066 x10°3 5.213 x10° 0.9848 0.9989
327.1 1.989 x10°3 6.105 x10° 0.9795 0.9983
329.0 2.502 x10°2 7.011 x10° 0.9091 0.9976
331.0 4.258 x10°3 8.335 x10° 0.9583 0.9956
333.1 5.500 x10°2 1.002 x104 0.9878 0.9992
335.0 5.982 x10°2 1.154 x104 0.9773 0.9990
337.0 9.936 x10°2 1.351 x10* 0.9680 0.9992
339.0 1.300 x102 1.564 x104 0.9835 0.9997
340.9 1.599 x102 1.843 x10* 0.9814 0.9997
342.8 1.797 x102 2.092 x10* 0.9724 0.9995

aDetermination coefficient of the nonlinear least-squares analysis.
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