Supplementary information

Desorption-induced Evolution of Cubic and Hexagonal Ices in Ultrahigh Vacuum and Cryogenic Temperatures

Gaurav Vishwakarma,[†] Jyotirmoy Ghosh,[†] and Thalappil Pradeep^{†*}

[†]DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India

AUTHOR INFORMATION

Corresponding author

*Email: pradeep@iitm.ac.in

Table of Content

Fig. S1A. RAIR spectra of 150 MLs of ACN, and 300 MLs of ACN:H ₂ O.	S3
Fig. S1B. TPD spectra of ACN and ACN in 1:1, 1:5 and 5:1 mixtures.	S4
Fig. S2. Temperature-dependent RAIR spectra of 300 MLs of ACN:H ₂ O (1:1).	S5
Fig. S3. RAIR spectra of 150 MLs of pure ACN in the $C \equiv N$ stretching region.	S6
Fig. S4. Comparison of O-H stretching bands of Ice I_h and Ice Ic obtained from 5:1 and	1 1:5
mixtures of ACN:H ₂ O film with reference results	S 7
Fig. S5. Isothermal time-dependent RAIR spectra of 300 MLs of ACN:H ₂ O (1:1) film at	: 125
К.	S 8
Fig. S6. Isothermal time-dependent RAIR spectra of 300 MLs of ACN:H ₂ O (1:1) film at	: 127
К.	S9
Fig. S7. Isothermal time-dependent RAIR spectra of 300 MLs of ACN:H ₂ O (1:1) film at	: 135
К.	S10
Fig. S8. Isothermal time-dependent RAIR spectra of 300 MLs of ACN:H ₂ O (1:1) film at	: 120
К.	S11
Fig. S9. Isothermal time-dependent RAIR spectra of 150 MLs of H ₂ O film at 130 K.	S12
Fig. S10. (a) Isothermal time-dependent RAIR spectra of 300 MLs of ACN:H ₂ O in 1:5 and	d 5:1
ratio in the C=N stretching region at 130 K.	S13
Fig. S11. Isothermal time-dependent RAIR spectra of 300 MLs of ACN:H ₂ O (1:5) film at	: 133
К.	S14

Fig. S12. Isothermal time-dependent RAIR spectra of 300 MLs of ACN: H_2O (1:5) film at 135
X. \$15
Fig. S13. Isothermal time-dependent RAIR spectra of 300 MLs of ACN:H ₂ O (5:1) film at 133
X. \$10
Fig. S14. Isothermal time-dependent RAIR spectra of 300 MLs of ACN:H ₂ O (5:1) film at 135
X. S17
Fable S1. The parameters for crystallization of Ice I_h during the desorption of ACN from ice
films at different temperatures. S18

Supplementary Information 1A:

Fig. S1A RAIR spectra of (a)150 MLs of ACN, (b) 300 MLs of 1:1 ACN:H₂O, (c) 300 MLs of 1:5 ACN:H₂O, (d) 300 MLs of 5:1 ACN:H₂O at 10 K.

Supplementary Information 1B:

Fig. S2B TPD-MS spectra of 150 MLs of pure ACN (green), 300 MLs of 1:1 ACN:H₂O (blue), 300 MLs of 1:5 ACN:H₂O (red), and 300 MLs of 5:1 ACN:H₂O (black). Ramping rate = 10 K.min⁻¹. Here, the intensities of CH_3CN^+ (m/z = 41) under these conditions are plotted. The marked desorption (*) hump is due to the restricted ACN desorption from 1:5 ACN:H₂O film during annealing.

Supplementary information 2:

Figure S3 Temperature-dependent RAIR spectra of 300 MLs of 1:1 ACN:H₂O film codeposited on Ru(0001) at 10 K and heated at a rate of 5 K min⁻¹. (a) O-H stretching region (b) C=N stretching region.

Supplementary information 3:

Fig. S4 RAIR spectra of 150 MLs of pure ACN in the C=N stretching region. (a) Temperaturedependent spectra taken after ACN deposited at 10 K and heated at a rate of 5 K min⁻¹ to the desorption temperature of ACN. ACN was found in two phases, where a low temperature amorphous phase (broad peak at ~ 2253 cm⁻¹) converted into crystalline phase (sharp peak at 2251 cm⁻¹) after 100 K.^{1,2} (b) Isothermal time-dependent spectra at 130 K. The ACN vapour was deposited at 10 K and heated at a rate of 5 K min⁻¹ to and kept at 130 K. ACN desorbed from substrate within 3 h.

Supplementary Information 4:

(a) Hexagonal Ice

Fig. S5a RAIR spectra of Ice I_h obtained after desorption of ACN from 300 MLs of 1:1 ACN:H₂O film at 130 K (black trace) and Ice I_h obtained after heating 150 MLs of pure solid H₂O at 155 K (red trace) in the O-H stretching region. The spectra were normalized by the integral intensity of the absorbance. ACN:H₂O (1:1) film of 300 MLs and pure H₂O film of 150 MLs were prepared by depositing at 10 K and heating at a rate of 5 K min⁻¹ to the mentioned temperatures. Both the spectrum were almost identical and confirms the formation of Ice I_h after desorption of ACN from 1:1 ACN:H₂O film.

(b) Cubic Ice

Fig. S4b The deconvoluted features of IR data of ref. 12 (J. Phys. Chem. Lett. vol. 11 (2020) p. 26) and the current work. In ref. 12, Ice I_c via acetone hydrate was prepared by annealing a co-deposited \sim 300 MLs acetone:H₂O (1:1) film to 135 K and maintaining it there in UHV for 3 h.

Supplementary Information 5:

Fig. S6 Isothermal time-dependent RAIR spectra of 300 MLs of 1:1 ACN:H₂O film at 125 K in the (a) O-H stretching region and, (b) C=N stretching region. Mixed film was prepared by vapour deposition on Ru(0001) at 10 K and heated to 125 K at a rate of 5 K min⁻¹.

Supplementary Information 6:

Fig. S7 Isothermal time-dependent RAIR spectra of 300 MLs of 1:1 ACN:H₂O film at 127 K in the (a) O-H stretching region and, (b) C=N stretching region. Mixed film was prepared by vapour deposition on Ru(0001) at 10 K and heated to 127 K at a rate of 5 K min⁻¹.

Supplementary Information 7:

Fig. S8 Isothermal time-dependent RAIR spectra of 300 MLs of 1:1 ACN:H₂O film at 135 K in the (a) O-H stretching region and, (b) C=N stretching region. Mixed film was prepared by vapour deposition on Ru(0001) at 10 K and heated to 135 K at a rate of 5 K min⁻¹.

Supplementary Information 8:

Fig. S9 Isothermal time-dependent RAIR spectra of 300 MLs of 1:1 ACN:H₂O film at 120 K in the (a) O-H stretching region and, (b) C=N stretching region. Mixed film was prepared by vapour deposition on Ru(0001) at 10 K and heated to 120 K at a rate of 5 K min⁻¹.

Supplementary Information 9:

Fig. S10 Isothermal time-dependent RAIR spectra of 150 MLs of H_2O film at 130 K in the O-H stretching region. Thin film was prepared by vapour deposition on Ru(0001) at 10 K and heated to 130 K at a rate of 5 K min⁻¹.

Supplementary Information 10:

Fig. S11 (a) Isothermal time-dependent RAIR spectra of 300 MLs of 1:5 ACN:H₂O film at 130 K in the C=N stretching region. (b) Isothermal time-dependent RAIR spectra of 300 MLs of 5:1 ACN:H₂O film at 130 K in the C=N stretching region. Mixed film was prepared by vapour deposition on Ru(0001) at 10 K and heated to 130 K at a rate of 5 K min⁻¹.

Supplementary Information 11:

Fig. S12 Isothermal time-dependent RAIR spectra of 300 MLs of 1:5 ACN:H₂O film at 133 K in the (a) O-H stretching region and, (b) C=N stretching region. Mixed film was prepared by vapour deposition on Ru(0001) at 10 K and heated to 133 K at a rate of 5 K min⁻¹.

Supplementary Information 12:

Fig. S13 Isothermal time-dependent RAIR spectra of 300 MLs of 1:5 ACN:H₂O film at 135 K in the (a) O-H stretching region and. (b) C=N stretching region. Mixed film was prepared by vapour deposition on Ru(0001) at 10 K and heated to 135 K at a rate of 5 K min⁻¹.

Supplementary Information 13:

Fig. S14 Isothermal time-dependent RAIR spectra of 300 MLs of 5:1 ACN:H₂O film at 133 K in the (a) O-H stretching region and, (b) C=N stretching region. Mixed film was prepared by vapour deposition on Ru(0001) at 10 K and heated to 133 K at a rate of 5 K min⁻¹.

Supplementary Information 14:

Fig. S15 Isothermal time-dependent RAIR spectra of 300 MLs of 5:1 ACN:H₂O film at 135 K in the (a) O-H stretching region and, (b) C=N stretching region. Mixed film was prepared by vapour deposition on Ru(0001) at 10 K and heated to 135 K at a rate of 5 K min⁻¹.

	Temperature (K)	п	Rate constant; k (s ⁻¹)
O-H stretching	125	1.80	1.39×10 ⁻⁰⁵
	127	1.75	2.66×10 ⁻⁰⁵
	130	1.63	9.60×10 ⁻⁰⁵
	135	0.91	8.05×10 ⁻⁰⁴

Table S1 The parameters for crystallization of Ice I_h during the desorption of ACN from ice films at different temperatures.

References:

- Tizek, H.; Grothe, H.; Knözinger, E. Gas-Phase Deposition of Acetonitrile: An Attempt to Understand Ostwald's Step Rule on a Molecular Basis. *Chem. Phys. Lett.* 2004, 383 (1–2), 129–133.
- (2) Hudson, R. L.; Moore, M. H. Reactions of Nitriles in Ices Relevant to Titan, Comets, and the Interstellar Medium: Formation of Cyanate Ion, Ketenimines, and Isonitriles. *Icarus* 2004, 172 (2), 466–478.