Electronic Supplementary Information for

Distinct Ultrafast Carrier Dynamics of α-In₂Se₃ and β-In₂Se₃: Contributions from Band Filling and Band Gap Renormalization

Shengjie Meng^a, Jian Wang,^a Hongyan Shi^{a,b}, Xiudong Sun^{a,b}, Bo Gao^{a,b*}

^aInstitute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China

^bCollaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 03006, China

We used a home-built micro-absorption spectroscope to measure the optical absorption of the In_2Se_3 crystal. According to Tauc et al.,¹ the absorption coefficient that near the

absorption edge of a direct-gap semiconductor is $\alpha = A \frac{(\hbar\omega - E_g^{opt})^{1/2}}{\hbar\omega}$, where α is the absorption coefficient of In₂Se₃ that can be calculated from its optical transmittance (*T*) and its thickness (*d*) as $\alpha(\lambda) = -\frac{\log g_{10}(T(\lambda))}{d}$, *A* is a material-dependent constant and E_g^{opt} is the optical energy gap of the material. The thickness of the In₂Se₃ crystal used in our experiment was 42 nm. Therefore, the wavelength-dependent optical transmission for α -In₂Se₃ a was shown in Fig. S1(a). The corresponding Tauc plots of optical absorption of α -In₂Se₃ is 1.43 eV, which was consistent with previous.²⁻³

Fig. S1 (a) Wavelength-dependent optical transmission for α -In₂Se₃. (b) Tauc plots of optical absorption in α -In₂Se₃, the red dotted lines show the Tauc extrapolation of the absorption edge.

After annealing the In₂Se₃ flake shown in Fig. 1(a) at 200 °C for 2 hours in argon atmosphere, the α -In₂Se₃ was supposed to be converted to β phase.⁴ Then we measured the optical absorption of β -In₂Se₃. The wavelength-dependent optical transmission for β -In₂Se₃ was shown in Fig. S2(a). The corresponding Tauc plots of optical absorption of β -In₂Se₃ was shown in Fig. S2(b). We found that the direct optical bandgap of β -In₂Se₃ is 1.55 eV, which was consistent with previous.²⁻³

Fig. S2 (a) Wavelength-dependent optical transmission for β -In₂Se₃. (b) Tauc plots of optical absorption in β -In₂Se₃, the red dotted lines show the Tauc extrapolation of the absorption edge.

References

- 1 J. Tauc, R. Grigorovici and A. Vancu, *Phys. Status Solidi B*, 1966, **15**, 627-637.
- 2 C. Julien, M. Eddrief, K. Kambas and M. Balkanski, *Thin Solid Films*, 1986, **137**, 27-37.
- 3 C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen and Y. S. Huang, *ACS Appl. Mater. Inter.*, 2013, **5**, 2269-2277.
- 4 X. Tao and Y. Gu, *Nano Lett.*, 2013, **13**, 3501-3505.