The impact of temperature and unwanted impurities on slow compression of ice

Christina M. Tonauer, Marion Bauer^a, Thomas Loerting*

Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria a current address: Sandoz GmbH, Biochemiestr. 10, A-6250 Kundl, Austria

* e-mail: thomas.loerting@uibk.ac.at

SUPPLEMENTARY FIGURES

Supplementary Fig. 1:

(a) Comparison of volume change $\Delta V(p)$ upon a stepwise increase in pressure (coloured line) and a continuous increase (black line) of 4 MPa min⁻¹ at 100 K. The sample used for the continuous compression experiment was not pre-compressed. Therefore, the non-linear densification until ~ 0.4 GPa is based on the release of air from the sample. The respective X-ray diffractograms (bottom left inset: stepwise increase, top right inset: continuous increase) reveal that both compression protocols yield HDA. Diffraction angles at top x-axis correspond to Cu-Ka radiation. (b) Compression protocol of the compression experiments shown in (a).

Supplementary Fig. 2:

(a) Comparison of volume change $\Delta V(p)$ for a constant compression rate of 2 MPa min⁻¹ (red) and 4 MPa min⁻¹ (black) at 100 K. The sample used for the experiment at 4 MPa min⁻¹ was not pre-compressed. Therefore, the non-linear densification until ~ 0.4 GPa is based on the release of air from the sample. In both cases, the respective X-ray diffractograms (bottom left: 2 MPa min⁻¹, top right: 4 MPa min⁻¹) reveal the formation of HDA. Diffraction angles at top x-axis correspond to Cu-K α radiation. (b) Compression protocols for experiments in (a).

Supplementary Fig. 3: Measured Pt-100 temperatures for the (quasi)-isothermal slow compression experiments of (a) pure hexagonal ice shown in Fig. 1a, 1c and 1e and of (b) mixtures of I_h/IX shown in Fig. 2a. (c) T(p) lines of the stepwise compression experiment at 4 MPa min⁻¹ depicted in Supplementary Fig. 1a, (d) of two experiments at a constant rate of 2 MPa min⁻¹ shown in Supplementary Fig. 2a and (e) of a slow compression experiment at a constant rate of 4 MPa min⁻¹ using D₂O, shown in Supplementary Fig. 4.

Supplementary Fig. 4: (a) Comparison of volume change $\Delta V(p)$ upon compression at 4 MPa min⁻¹ at 100 K for a H₂O sample (black) and a D₂O sample (blue). The H₂O sample was not pre-compressed. Therefore, the non-linear densification until ~ 0.4 GPa is based on the release of air from the sample. Onset and offset pressures (p_{onset}, p_{offset}) of the steplike transition are defined by the intersection points of tangents along the $\Delta V(p)$ curve ahead of the transition, at the transition and after the transition, respectively. **(b)** Comparison of powder x-ray diffractograms measured at ~ 77 K (depicted with an offset along the y-axis). Diffraction angles at top x-axis correspond to Cu-Kα radiation. The top two diffractograms were measured using the *Bruker D8* powder diffractometer, the others were measured on a *Siemens D5000*. Independent of the compression rate and the isotope (H₂O or D₂O), slow compression of ice I_h at 100 K results in formation of HDA (halo peak maximum at 2.9 Å) and no crystalline forms of ice.