Electronic Supplementary Information for

Radiation-induced transformations of acetaldehyde molecules at cryogenic temperatures: a matrix isolation study

Pavel V. Zasimov, Elizaveta V. Sanochkina, and Vladimir I. Feldman^{*} Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia

*Corresponding author, e-mail: <u>feldman@rad.chem.msu.ru</u> (V.F.)

Table S1 Main absorption maxima (cm⁻¹) of the CH₃CHO and CD₃CDO isolated molecules absorption bands in solid noble gas matrices. The gas-phase values may be found elsewhere.^{S1} Tentative assignments are in italic.

Assignment	Ne	Ar	Kr	Xe	Gas phase		
CH ₃ CHO							
$2v_4$	3481.5	3463.3	3462.4	3452.0	3480		
$v_1(CH_3 d-str)$	3028.6	3022.8	3018.6	3006.6	3014		
	3016.9		3013.2				
$v_{11}(CH_{3 \text{ d-str}})$	2982.8	2961.8	2967.9	2959.4	2968		
	2964.8		2952.9	2956.3	2964		
$v_2(CH_{3 \text{ s-str}})$	2938.6	2921.8	2923.5	2912.1	2923		
	2935.9		2913.5				
	2926.4						
	2922.0						
$2v_6$	2832.6	2840.6	2833.9	2823.7	2830		
				2821.3			
$v_5 + v_6$	2816.7	2817.0	2814.1	2804.5	2809		
			2811.2				
$v_5 + v_7 / v_7 + v_{12}$	2753.5	2751.1	2751.0	2743.1	_		
			2745.7	2731.2			
v_3 (C–H _{str})	2728.3	2736.2	2730.2	2716.6	2716		
	2719.8		2724.8	2713.7			
	2716.3						
$2v_9$	1758.8	1748.5	1774.1	1762.0	_		
$v_4(CO_{str})$	1738.1	1727.2	1740.8	1735.6	1743		
			1732.6				
			1724.1				
$v_5(CH_3 d-deform)$	1437.3	1431.6	1428.7	1423.6	1441		
	1433.9	1427.0	1424.1				
	1431.2sh						
$v_6(C-H_{bend})$	1399.4	1398.9	1404.0	1398.0	1395		
			1394.8	1384.2			
$v_7(CH_{3 \text{ s-deform}})$	1356.7sh	1354.1	1349.6	1345.5	1352		
	1353.7	1348.8	1346.4				
	1349.0	1345.9					
$v_8(C-C_{str})$	1118.7	1111.3	1118.8	1116.1	1114		
	1114.9		1112.7				
			1109.9				
$v_9(CH_{3 rock})$	876.4	871.3	887.9	882.2	867		
	873.6sh						
v_{14} (C–H _{bend})	767.4	772.4	771.3	765.7	764		
<pre>/</pre>			769.4				
$v_{10}(\text{CCO}_{\text{deform}})$	513.0sh	509.9sh	516.9	515.5	509		
	509.5	505.9	515.0	512.6			
			510.5	508.6sh			
			505.4				

		CD ₃ CD	0		
$2v_4$	3453.8	3436.1	3446.2	3436.8	3457
$v_1(CD_3 d-str)$	2273.1	2267.3	2265.4sh	2257.1	2262
	2270.8		2263.1		
	2265.3		2260.5		
$v_{11}(CD_{3 \text{ d-str}})$	2234.3	2219.4	2223.9	2215.3	2223
	2206.7		2213.4		
			2207.9		
$v_6 + v_{12}$	_	_	2195.0	2200.8	_
$v_2(CD_{3 \text{ s-str}})$	2131.7	2127.6	2129.9sh	2118.6	2125
	2129.0		2125.5		
	2124.4sh		2122.3		
$2v_{12}$	2099.4	2104.9	2100.4	2086.6	_
12		2099.0	2094.9		
		2093.6			
$v_6 + v_8 / v_6 + v_{13}$	2085.3	2085.4	2086.1	2073.9	_
0 0 0 0 0 0 0 15	2081.4	2070 9	2081.5	2069.4	
			2079.6		
			2076.2		
$v_3(C-D_{str})$	2061.8	2063.3	2065.2	2049.3	2054
5(- 50)	2054.7	2053.7	2057.0		
	2047.8				
$v_8 + v_{13}$	1897.1	1895.1	1907.5	1899.2	_
0 10	1895.3		1895.6	1892.2	
			1892.4		
$v_4(CO_{str})$	1736.1	1730.0sh	1732.0	1726.9	1735
	1731.5sh	1726.9	1727.9sh	1723.3sh	
	1728.3	1723.3	1725.1	1715.5	
	1722.0	1721.3	1721.1		
		1719.2	1716.9		
$v_6(C-D_{hend})$	1154.0	1152.3	1157.0	1152.5	1151
o(bond)	1147.7	1147.9	1150.5	1142.9	
		1143.5	1145.8		
			1140.6		
$v_{12}(CD_{3 d-deform})$	1049.6	1044.7	1044.8sh	1040.3	1047
	1047.9		1042.6		
	1046.0sh		1037.1		
$v_7(CD_{3 \text{ s-deform}})$	1028.7	1024.0	1022.5	1019.3	1029
/ (1026.8sh				
	1024.7sh				
$v_{13}(CD_{3 rock})$	950.6	947.2	948.2	947.9	_
	947.7		947.9		
$v_8(C-C_{str})$	940.6	941.1	941.2	939.2	938
		938.6	937.4	936.8sh	
$v_{10}(\text{CCO}_{\text{deform}})$	443.4	440.6	443.5	442.2	436
	436.6	436.1	441.4	439.7	
		433.4	436.8	436.2	
			432.8		

sh-shoulder

Ne	Ar	Kr	Xe
		CH ₃ CHO	
2226.0	2223.7	1873.2	849.7
1474.0	2221.9	718.8	
1288.3	2207.9		
1223.2	2201.3		
	1884.7		
		CD ₃ CDO	
1967.6	1735.1	_	_
1587.3	1166.4		
1417.2			

Table S2 Maxima (cm⁻¹) of the unassigned absorption bands detected in the irradiated CH₃CHO/Ng and CD₃CDO/Ng (Ng = Ne, Ar, Kr, or Xe) samples.

Species	Mode	Value, km mol^{-1}	Method	Ref.
СО	CO _{str}	66	Ar matrix isolation	S2
$C_2H_2\cdots H_2O$	C-H _{str}	257	MP2/aug-cc-mpVTZ	S3
CH_4	CH _{3 d-deform}	29	CCSD/aug-cc-pVTZ	S4
H ₂ CCO and H ₂ CCO-H ₂	CO str	695	CCSD/aug-cc-pVTZ	S4
HCCO'	CCO a-str	760	CCD/cc-pV(T+d)Z	S4
CH ₃ •	OPLA	73	CCSD/aug-cc-pVTZ	S4
CH ₂ CHOH	Mixed mode	175	CCD/6-31G(2df, p)	S4
CH ₃ CO [•]	CO str	150	CCD/6-311G*	S4
ССО	CCO a-str	230	CCD=FULL/aug-cc-pVQZ	S4

Table S3 Absorption intensities of the CH₃CHO radiolysis products used in the present work.

OPLA – *out of plane*

Supplementary References

- S1. H. Hollenstein and H. H. Günthard, Spectrochim. Acta A, 1971, 27, 10, 2027–2060.
- S2. G. J. Jiang, W. B. Person and K. G. Brown, J. Chem. Phys., 1975, 62, 1201–1211.
- S3. D. Tzeli, A. Mavridis, and S. S. Xantheas, J. Chem. Phys., 2000, 112, 14, 6178–6189.
- S4. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 21, August 2020, Editor: Russell D. Johnson III, http://cccbdb.nist.gov/. DOI:10.18434/T47C7Z.

Fig. S1 Build-up profiles of the major CH₃CHO radiolysis products in the CH₃CHO/CFCl₃/Ng (Ng = Ar, Xe) 1:0–2:1000 matrices. Note that the H₂CCO curves represent the total integrated intensity of perturbed and unperturbed ketene signals. All of the absorption band integrals were normalized to an appropriate absorption coefficient (see Table S3 of ESI) and the integrated absorption intensity of the CH₃CHO C–C _{str} absorption band in the corresponding non-irradiated sample.

Fig. S2 Difference FTIR spectra of the CH₃CHO/Ng 1:1000 matrices (Ng = Ne, Ar, Kr, and Xe) showing the effect of irradiation with X-rays (a, c, e, and f) and subsequent photolysis with $\lambda_D = 620$ nm and $\lambda_D = 520$ nm light (b, d, f, and h). The absorbed dose was 110.9, 115.8, 43.7, and 132.0 kGy for Ne, Ar, Kr, and Xe samples, respectively. The $\lambda_D = 620$ nm photolysis time was 15, 10, 10, and 10 min for Ne, Ar, Kr, and Xe, respectively. The $\lambda_D = 520$ nm photolysis time was 30, 10, 30, and 40 min for Ne, Ar, Kr, and Xe, respectively. Spectra in the left and right panels are scaled for a better representation. Absorptions due to atmospheric water are marked with asterisks. The unassigned absorption bands with maxima at 1884.7 and 1873.2 cm⁻¹ are marked with question signs.