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S1 Two-probe relaxations

The structure relaxations for the two-probe transport systems were carried out with the

Vienna ab initio simulation package (VASP).S1,S2 We used the projector augmented wave

potentialsS3 with the Perdew-Burke-Enerzerhof generalized gradient approximation (PBE-

GGA)S4 with the D3S5 empirical correction to include dispersion. The energy cutoff was

400 eV and a 2 × 2 × 1 Γ-centered k-point grid was used. The relaxations were continued

until forces on atoms were less than 0.02 eV/Å(for those atoms that were not frozen; see

below).

The radicals and the naphthalene molecule were relaxed between Au electrodes as shown

in Fig. S1a. First, the optimal electrode-electrode separation, d, was determined by a series

of relaxations for the 1,3-DAPLY system. This was accomplished by freezing the atoms in

the shaded regions to their bulk positions and allowing all other atoms to fully relax. Once

the optimal electrode-electrode separation was found for 1,3-DAPLY, the distance was fixed

and all other radicals and naphthalene were relaxed in a similar manner (with the same d

for all systems).

The two-probe structures were created by extending the Au electrodes in either direction

to build the system shown in Fig. S1b. We calculate the spin transport properties of these

systems using the NEGF-DFT code Nanodcal,S6,S7 which employs the retarded Green’s

function,

G(E) = [ES −H − ΣL − ΣR]−1, (S1)

where H and S are the Hamiltonian and overlap matrices for the central region of the

two-probe structure, calculated by DFT. ΣL,R are self-energies that account for the effect

of the left/right electrodes on the central region; these are complex quantities with their

real part representing a shift in the energy levels and their imaginary part representing the

broadening, which can also be represented as the linewidth matrix, ΓL,R = i(ΣL,R − Σ†L,R).

The self-energy is calculated within the NEGF-DFT formalism by an iterative technique.S8
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Figure S1: The two-probe structure relaxations were carried out on the system shown in (a),
with the Au atoms in the shaded region being frozen while all other atoms being allowed to
relax while minimizing the energy with respect to distance, d. The resulting minimum energy
structure was used to build the two-probe structure for the electron transport calculations,
shown in (b).

The electronic density matrix can be calculated from these quantities as,

ρ =
1

2π

∫ ∞
−∞

[f(E, µL)GΓLG
† + f(E, µR)GΓRG

†]dE, (S2)

where µL,R are the electrochemical potentials of the left and right electrodes and the Fermi-

Dirac function describes the probability of occupying a single-particle orbital with a given

energy at a specified electrochemical potential. The bias voltage between the two electrodes

is given by, eVb = µL − µR. The density obtained from the above equation is used in

a subsequent NEGF-DFT iteration step and the cycle is repeated until self-consistency is

achieved in terms of the Hamiltonian and electron density.
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The transmission coefficient is then obtained from the Green’s function,

T (E, Vb) = Tr(ΓLGΓRG
†), (S3)

which represents the probability that an electron with a given energy, E, transmits from one

electrode through the central region into the other electrode. This quantity can be obtained

for an electron having spin σ, and the spin-resolved current can be obtained by integrating

the transmission function in the bias window with the Landauer-Büttiker equation,S9

Iσ(Vb) = − e
h

∫ µR

µL

Tσ(E, Vb)[f(E, µL)− f(E, µR)]dE. (S4)
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S2 Spin density, MOs, Transmission

The figures in this section show the spin density distribution over the isolated radicals, the

spin-resolved molecular orbitals (MOs) with their corresponding energies, and transmission

spectra with transmission peaks assigned to their corresponding MOs.

Figure S2: PLY: spin density (top-middle), α and β MOs of isolated molecule with corre-
sponding energies (eV) (right), and spin-resolved transmission spectra (α in blue, β in red)
with assigned MOs responsible for transmission peaks (bottom left). The peak assignments
were obtained by using the approach demonstrated in Fig. S5.
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Figure S3: 1,3-DAPLY: spin density (top-middle), α and β MOs of isolated molecule with
corresponding energies (eV) (right), and spin-resolved transmission spectra (α in blue, β
in red) with assigned MOs responsible for transmission peaks (bottom left). The peak
assignments were obtained by using the approach demonstrated in Fig. S5.
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Figure S4: 4,9-DOPLY: spin density (top-middle), α and β MOs of isolated molecule with
corresponding energies (eV) (right), and spin-resolved transmission spectra (α in blue, β
in red) with assigned MOs responsible for transmission peaks (bottom left). The peak
assignments were obtained by using the approach demonstrated in Fig. S5
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Figure S5: 1,3-DA-4,9-DOPLY: spin density (top-middle), α and β MOs of isolated molecule
with corresponding energies (eV) (right), and spin-resolved transmission spectra (α in blue,
β in red) with assigned MOs responsible for transmission peaks (bottom left). The scattering
states are shown for relevant transmission peaks, which can be assigned to MOs by visual
comparison.
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Figure S6: NAPH: MOs of isolated molecule with corresponding energies (eV) (right), and
spin-resolved transmission spectra (α in blue, β in red) with assigned MOs responsible for
transmission peaks (bottom left).
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S3 Charge and Spin

Figure S7: Relationships between charge (a,c) or zero-bias spin polarization (b,d) of the
in-junction radical versus SOMO energy (a,b) or SUMO energy (c,d) of the isolated radical.
There is an excellent correlation between charge and the SUMO energy.
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S4 I − V and SFE over larger bias window

Figure S8: Bias-dependent current (a) and SFE (b) for naphthalene and the four PLY
radicals up to 1.0 V.
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