Steric Effects in Hydrogen Evolution Reaction Based on TMX₄ Active Center:

Fe-BHT as a Case Study

Zebin Ren, Shuhua Wang, Haona Zhang, Baibiao Huang, Ying Dai,* and Wei Wei*

School of Physics, State Key Laboratory of Crystal Materials, Shandong University,

Jinan 250100, China

* Corresponding authors: daiy60@sdu.edu.cn (Y. Dai), weiw@sdu.edu.cn (W. Wei)

TM-BHT	Lattice constant (Å)	$E_{\rm coh}$ (eV/atom)	$S_0(\text{\AA}^2)$	$\partial^2 E_{\rm total} / \partial \varepsilon^2$	Band gaps (eV)
Sc–BHT	9.37	5.67	76.03	1168.27	0
Ti–BHT	9.09	5.47	71.56	1106.37	0
V–BHT	8.85	5.39	67.83	1088.45	0
Cr–BHT	8.67	5.35	65.10	945.87	0
Mn–BHT	8.55	5.39	63.31	781.41	0.03
Fe–BHT	8.46	5.41	61.98	862.95	0
Co-BHT	8.44	5.36	61.69	794.372	0
Ni–BHT	8.56	5.36	63.46	838.17	0
Cu–BHT	8.75	5.32	66.31	834.412	0

Table S1. Lattice constant, cohesive energy (E_{coh}) , area of the optimized unit cell (S_0) , $\partial^2 E_{total} / \partial \varepsilon^2$ and band gap of TM–BHTs considered in this work.

TM-BHT	$\Delta G_{\mathrm{H}*}$ -TM	ΔG_{H} -S
Sc-BHT	-0.42	/
Ti–BHT	-0.38	/
V–BHT	1.36	/
Cr-BHT	0.29	/
Mn–BHT	0.75	/
Fe-BHT	0.09	1.22
Co-BHT	-0.45	0.14
Ni–BHT	-1.21	-0.85
Cu–BHT	1.16	0.49

Table S2. Gibbs free energy change (ΔG_{H^*}) of TM–BHTs for hydrogen adsorption on different active sites (TM and S). "/" means that the adsorbed hydrogen moves to TM sites after structural optimization. The unit is eV.

Table S3. ΔG_{H^*} ,	ible S3. ΔG_{H^*} , z^2 for different active center FeS _{4-x} N _x . The unit is eV.				
FeS _{4-x} N _x	ΔG_{H^*}	E _{unoccupied}	$\varepsilon_{occupied}$	$\Delta arepsilon_{d_{z^2}}^{\uparrow\downarrow}$	
FeS ₄	0.09	0.70	-2.86	3.56	
FeS ₃ N	0.14	0.75	-2.86	3.61	
FeS_2N_2	0.26	0.81	-2.93	3.74	
FeSN ₃	0.39	0.80	-3.02	3.82	
FeN ₄	0.64	0.94	-3.54	4.48	

Table S3. ΔG_{H^*} , $\Delta \varepsilon_d^{\uparrow\downarrow}$ for different active center FeS_{4-x}N_x. The unit is eV.

	- Tot i c - Diff under strain. The unit is ev.			
strain	ΔG_{H^*}	$\varepsilon_{unoccupied}$	$\varepsilon_{occupied}$	$\Delta arepsilon_{d_{z^2}}^{\uparrow\downarrow}$
4%	0.46	0.85	-3.14	3.99
3%	0.36	0.86	-3.06	3.92
2%	0.22	0.82	-2.93	3.75
1%	0.17	0.74	-2.93	3.67
0%	0.09	0.70	-2.86	3.56
-1%	0.04	0.66	-2.87	3.53
-2%	0.03	0.62	-2.86	3.48

Table S4. ΔG_{H^*} and $\Delta \varepsilon_d^{\uparrow\downarrow}$ for Fe–BHT under strain. The unit is eV.

TiS _{4-x} N _x	ΔG_{H^*}	strain	$\Delta G_{\mathrm{H}^{*}}$
TiS_4	-0.38	0%	-0.38
TiS ₃ N	-0.31	1%	-0.13
TiS_2N_2	-0.26	2%	0.28
TiSN ₃	-0.16	3%	0.30
TiN ₄	-0.05	4%	0.45

Table S5. ΔG_{H^*} of TiS_{4-x}N_x and strained Ti–BHT. The unit is eV.

Fig. S1 (a) Cohesive energy (E_{coh}) of TM–BHTs of consideration, the horizontal dashed line represents the previous value of Cu–BHT of 5.11 eV/atom. (b) In-plane stiffness of TM–BHTs of interest in this work.

Fig. S2 Relationship between the total energy and strain along *b* axis.

Fig. S3 Band structures of 2D TM–BHTs studied in this work, the Fermi level is set to

Fig. S4 Local structure of FeS₃N, FeS₂N₂-1, FeS₂N₂-2, FeS₂N₂-3, FeSN₃ and FeN₄ active centers in Fe–BHT.

Fig. S5 Projected density of states (PDOS) on S p and Fe d orbitals for (a) FeS₃N, (c) FeS₂N₂ and (e) FeSN₃. Crystal orbital Hamilton population (COHP), integrated COHP (ICOHP), and PDOS for H s and Fe d orbitals for (b) FeS₃N, (d) FeS₂N₂ and (f) FeSN₃. Insets are hydrogen adsorption configurations. The vertical dashed line represents the Fermi level.

Fig. S6 Projected density of states (PDOS), crystal orbital Hamilton population (COHP) and integrated COHP (ICOHP) of Fe–BHT under strain, (a) -2%, (b) -1%, (c) 1%, (d) 2%, (e) 3% and (f) 4%. Upper: PDOS on S *p* and Fe *d* orbitals. Bottom: COHP, ICOHP and PDOS on H *s* and Fe *d* orbitals. The vertical dashed line represents the Fermi level.

Fig. S7 Relationship between ΔG_{H^*} and ICOHP for (a) FeS_{4-x}N_x and (b) strained Fe-BHT.

Fig. S8 Variation of energy and temperature versus the AIMD simulation time for Fe– BHT. Insets denote the top and side views of Fe–BHT after AIMD simulation lasting for 10 ps with a time step of 1 fs at T = 500 K.