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S1. Rate equations

HOR/HER consists of three steps:

𝑟𝑇 = 𝑘0
𝑇𝑝𝐻2

(1 ‒ 𝜃)2
(1)

Tafel: 
𝐻2 + 2 ∗  

𝑘𝑇
↔

𝑘 ‒ 𝑇

2𝐻𝑎𝑑𝑠
𝑟 ‒ 𝑇 = 𝑘 0

‒ 𝑇𝜃2 (2)

𝑟𝐻 = 𝑘0
𝐻𝑝𝐻2

(1 ‒ 𝜃)𝑒
𝛽𝐻𝑓𝜂𝐻 (3)

Heyrovsky: 
𝐻2 +  ∗  

𝑘𝐻
↔

𝑘 ‒ 𝐻

𝐻𝑎𝑑𝑠 + 𝐻 + + 𝑒 ‒

𝑟 ‒ 𝐻 = 𝑘 0
‒ 𝐻𝑎

𝐻 + 𝜃𝑒
‒ (1 ‒ 𝛽𝐻)𝑓𝜂𝐻 (4)

𝑟𝑉 = 𝑘0
𝑉𝜃𝑒

𝛽𝑉𝑓𝜂𝑉 (5)

Volmer: 
𝐻𝑎𝑑𝑠 

𝑘𝑉
↔

𝑘 ‒ 𝑉

𝐻 + + 𝑒 ‒ +  ∗
𝑟 ‒ 𝑉 = 𝑘 0

‒ 𝑉𝑎
𝐻 + (1 ‒ 𝜃)𝑒

‒ (1 ‒ 𝛽𝑉)𝑓𝜂𝑉 (6)

where , ,  and  are the reaction rate, rate constant, symmetry factor and the overpotential for step  (i.e.,  𝑟𝑖 𝑘0
𝑖 𝛽𝑖 𝜂𝑖 𝑖 𝑖 = 𝑇,𝐻,𝑉

for Tafel, Heyrovsky and Volmer, respectively; for  and  a minus sign indicates backward direction),  is the partial 𝑟𝑖 𝑘𝑖
𝑝𝐻2

pressure of ,  is the potential-dependent coverage of active H* species,  is the activity of the protons and  denotes 𝐻2 𝜃 𝑎
𝐻 + 𝑓

 ( : the Faraday's constant, : the universal gas constant, : the temperature). 𝐹/𝑅𝑇 𝐹 𝑅 𝑇

S1.1. HOR

Tafel Volmer mechanism‒

If Tafel is the rate-determining step (RDS),  is close to zero, and the rate expression is obtained from Eq. 1:𝜃

𝑟𝐻𝑂𝑅 = 𝑘0
𝑇𝑝𝐻2 (7)

Since Eq. 7 has no potential dependence, the anodic transfer coefficient  is 0.𝛼𝑎

If Volmer is the RDS, Tafel step is equilibrated ( ), leading to the follow expression for :𝑟𝑇 = 𝑟 ‒ 𝑇 𝜃

𝜃 =
𝐾0

𝑇𝑝𝐻2

1 + 𝐾0
𝑇𝑝𝐻2

(8)

where  is the equilibrium constant for Tafel step. Then, the rate expression is obtained by combining Eqs. 5 𝐾0
𝑇 = 𝑘0

𝑇/𝑘 0
‒ 𝑇

and 8:
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𝑟𝐻𝑂𝑅 = 𝑘0
𝑉

𝐾0
𝑇𝑝𝐻2

1 + 𝐾0
𝑇𝑝𝐻2

𝑒
𝛽𝑉𝑓𝜂𝑉 (9)

Only the exponential term in Eq. 9 depends on the applied potential. Therefore,  and is between 0 and 1.𝛼𝑎 = 𝛽𝑉

Heyrovsky Volmer mechanism‒

If Heyrovsky is the RDS,  is close to zero, and the rate expression is obtained from Eq. 3:𝜃

𝑟𝐻𝑂𝑅 = 𝑘0
𝐻𝑝𝐻2

𝑒
𝛽𝐻𝑓𝜂𝐻 (10)

Similar to the previous case,  and is between 0 and 1.𝛼𝑎 = 𝛽𝐻

If Volmer is the RDS, Heyrovsky step will be equilibrated ( ), leading to the follow expression for :𝑟𝐻 = 𝑟 ‒ 𝐻 𝜃

𝜃 =
𝐾0

𝐻𝑝𝐻2

𝐾0
𝐻𝑝𝐻2

+ 𝑎
𝐻 + 𝑒

‒ 𝑓𝜂𝐻 (11)

where  is the equilibrium constant for Heyrovsky step. Then, the rate expression is obtained by combining 𝐾0
𝐻 = 𝑘0

𝐻/𝑘 0
‒ 𝐻

Eqs. 5 and 11:

𝑟𝐻𝑂𝑅 = 𝑘0
𝑉

𝐾0
𝐻𝑝𝐻2

𝐾0
𝐻𝑝𝐻2

+ 𝑎
𝐻 + 𝑒

‒ 𝑓𝜂𝐻
𝑒

𝛽𝑉𝑓𝜂𝑉
(12)

In this case, if ,  is saturated and the only potential dependence corresponds to the exponential term, 
𝐾0

𝐻𝑝𝐻2
≫ 𝑎

𝐻 + 𝑒
‒ 𝑓𝜂𝐻

𝜃

so  and is between 0 and 1. Otherwise, the H* coverage vary exponentially with potential, giving rise to an effective 𝛼𝑎 = 𝛽𝑉

 that is between 1 and 2. 𝛼𝑎

S1.2. HER

Volmer Tafel mechanism‒

If Volmer is the RDS,  is close to zero, and the rate expression is obtained from Eq. 6:𝜃

𝑟𝐻𝐸𝑅 = 𝑘 0
‒ 𝑉𝑎

𝐻 + 𝑒
‒ (1 ‒ 𝛽𝑉)𝑓𝜂𝑉 (13)

Only the exponential term in Eq. 13 depends on the applied potential. Therefore,  and is between 0 and 1.𝛼𝑐 = 1 ‒ 𝛽𝑉

If Tafel is the RDS, Volmer step will be equilibrated ( ), leading to the follow expression for :𝑟𝑉 = 𝑟 ‒ 𝑉 𝜃

𝜃 =
𝑎

𝐻 +

𝑎
𝐻 + + 𝐾0

𝑉𝑒
𝑓𝜂𝑉 (14)

where  is the equilibrium constant for Volmer step. Then, the rate expression is obtained by combining Eqs. 𝐾0
𝑉 = 𝑘0

𝑉/𝑘 0
‒ 𝑉

2 and 14:

𝑟𝐻𝐸𝑅 = 𝑘 0
‒ 𝑇( 𝑎

𝐻 +

𝑎
𝐻 + + 𝐾0

𝑉𝑒
𝑓𝜂𝑉)2

(15)



Supporting Information

In this case, if ,  is saturated and the rate is independent of the applied potential, so  0. Otherwise, 
𝑎

𝐻 + ≫ 𝐾0
𝑉𝑒

𝑓𝜂𝑉
𝜃 𝛼𝑐 =

the H* coverage vary with potential as , giving rise to an effective  2. 𝑒
2𝑓𝜂𝑉 𝛼𝑐 =

Volmer Heyrovsky mechanism‒

If Volmer is the RDS, the rate is governed by Eq. 13, as for the Volmer Tafel mechanism.‒

If Heyrovsky is the RDS, Volmer step will be equilibrated (i.e., Eq. 14). Then, the rate expression is obtained by combining 

Eqs. 4 and 14:

𝑟𝐻𝐸𝑅 = 𝑘 0
‒ 𝐻

(𝑎
𝐻 + )2

𝑎
𝐻 + + 𝐾0

𝑉𝑒
𝑓𝜂𝑉

𝑒
‒ (1 ‒ 𝛽𝐻)𝑓𝜂𝐻

(16)

In this case, if ,  is saturated and the only potential dependence corresponds to the exponential term, so 
𝑎

𝐻 + ≫ 𝐾0
𝑉𝑒

𝑓𝜂𝑉
𝜃

 and is between 0 and 1. Otherwise, the H* coverage vary exponentially with potential, giving rise to an 𝛼𝑐 = 1 ‒ 𝛽𝐻

effective  that is between 1 and 2. 𝛼𝑐
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S2. Derivation of the concentration overpotential curve for HOR/HER

Mass transport limitations generate a concentration polarization at the interface, meaning that the surface concentrations 

of the reduced and oxidized species (  and , respectively) and are different than the bulk concentrations of the reduced 𝑐𝑠
𝑅 𝑐𝑠

𝑂

and oxidized species (  and , respectively). For a chemical reaction completely governed by mass transport (i.e., when 𝑐∞
𝑅 𝑐∞

𝑂

reaction kinetics can be considered infinitely fast) and under steady-state, the electrode potential and the surface 

concentrations of the initial reactant and the final product are in Nernstian equilibrium at all times:1 

𝐸 = 𝐸𝑒𝑞 +
𝑅𝑇
𝑛𝐹

𝑙𝑛
𝑐∞

𝑅𝑐𝑠,𝑒𝑞
𝑂

𝑐𝑠,𝑒𝑞
𝑅 𝑐∞

𝑂
(17)

where  and  are the electrode potential and the equilibrium potential, respectively (  and  and  are 𝐸 𝐸𝑒𝑞 𝜂 = 𝐸 ‒ 𝐸𝑒𝑞) 𝑐𝑠,𝑒𝑞
𝑅 𝑐𝑠,𝑒𝑞

𝑂

the equilibrium surface concentrations of the reduced and oxidized species, respectively. Note that, for acidic HOR/HER, 

 and . From mass conservation, the diffusion limited current density  is equivalent to the fluxes of O to 𝑅 ≡ 𝐻2 𝑂 ≡ 𝐻 + 𝑗𝑑

and R species at the interface:

𝑗𝑑 = 𝑛𝑅𝐹𝑘𝑑,𝑅(𝑐∞
𝑅 ‒ 𝑐𝑠,𝑒𝑞

𝑅 ) (18a)

𝑗𝑑 = 𝑛𝑂𝐹𝑘𝑑,𝑂(𝑐𝑠,𝑒𝑞
𝑂 ‒ 𝑐∞

𝑂) (18b)

where  is the number of electrons transferred per species  and  is the mass transport coefficient for species . At 𝑛𝑖 𝑖 𝑘𝑑,𝑖 𝑖

sufficiently high anodic or cathodic overpotentials,  converges to the limiting anodic ( ) and cathodic ( ) currents, 𝑗𝑑 𝑗𝑙,𝑎 𝑗𝑙,𝑐

respectively:

𝑗𝑙,𝑎 = 𝑛𝑅𝐹𝑘𝑑,𝑅𝑐∞
𝑅 (19a)

𝑗𝑙,𝑐 =‒ 𝑛𝑂𝐹𝑘𝑑,𝑂𝑐∞
𝑂 (19b)

By dividing Eqs. 18a and 18b by Eqs. 19a and 19b, respectively, the following relations are obtained:

𝑐𝑠,𝑒𝑞
𝑅

𝑐∞
𝑅

= 1 ‒
𝑗𝑑

𝑗𝑙,𝑎
(20a)

𝑐𝑠,𝑒𝑞
𝑂

𝑐∞
𝑂

= 1 ‒
𝑗𝑑

𝑗𝑙,𝑐
(20b)

Finally, substituting Eqs. 20a and 20b into the Nernst equation (i.e., Eq. 17) and rearranging, we obtain

𝑗𝑑 =
1 ‒ 𝑒 ‒ 𝑛𝐹𝜂/𝑅𝑇

1
𝑗𝑙,𝑎

‒
𝑒 ‒ 𝑛𝐹𝜂/𝑅𝑇

𝑗𝑙,𝑐

(21)

which is known as the concentration overpotential curve. For acidic or alkaline HOR/HER, the transport of  or  𝐻 + 𝑂𝐻 ‒

species is much faster than that of , so mass transport limitations arise from limited solubility of  (i.e.,  1 mmol/L 𝐻2 𝐻2 <

at 298 K).2 Then, Eq. 21 can be simplified by assuming :𝑗𝑙,𝑐→∞
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𝑗𝑑 = 𝑗𝑙,𝑎(1 ‒ 𝑒 ‒ 2𝐹𝜂/𝑅𝑇) (22)

If the kinetics of the reaction is fast enough,  will be completely determined by the transport of  from the bulk to the 𝑗 𝐻2

electrode surface in the HOR branch and from the electrode surface to the bulk in the HER branch. For instance, the 

measured polarization curve for acidic HOR/HER on Pt-based electrodes using rotating disk electrodes (RDEs) overlaps 

with Eq. 22.2,3

S3. The apparent Tafel slope of 30 mV/dec for acidic HER on Pt

Eq. 22 can be rearranged as follows:

𝜂 =‒
𝑅𝑇
2𝐹

ln (1 ‒
𝑗𝑑

𝑗𝑙,𝑎
) (23)

Figure S1 shows the concentration overpotential curve for acidic HOR/HER under typical RDE conditions. In the HER 

branch,  is orders of magnitude higher than , meaning that in the Tafel region for HER the logarithm in Eq. 23 can |𝑗𝑑| 𝑗𝑙,𝑎

be approximated by:

𝑙𝑛(1 ‒
𝑗𝑑

𝑗𝑙,𝑎
) ≈ 𝑙𝑛(|𝑗𝑑|) ‒ 𝑙𝑛(𝑗𝑙,𝑎) (24)

Combining Eqs. 23 and Eq. 24, it is possible to see that the slope of a  vs  plot is just . At room 𝜂 log |𝑗𝑑| ‒ 𝑅𝑇ln 10/2𝐹

temperature, this corresponds to a Tafel slope of 30 mV/dec, as shown also in the inset plot in Figure S2. A true Tafel slope 

that arises from intrinsic kinetics, however, can only be obtained from .𝑗𝑘

Figure S1. Concentration overpotential curves for acidic HER/HOR when considering the mass transport limitation from both H+ and 

H2 (dotted blue line, Eq. 21), and when only mass transport limitation from H2 is considered (dashed purple line, Eq. 22). The limiting 

currents used in the plot are  2.2 mA/cm2 and  1700 mA/cm2, which correspond to a RDE experiment in 0.5M H2SO4, 𝑗𝑙,𝑎 = 𝑗𝑙,𝑐 = ‒

 1 atm and  1600 rpm. 
𝑝𝐻2

= 𝜔 =
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S4. Imposing  as a constrain when fitting experimental data𝛼𝑎 + 𝛼𝑐 = 1

Figure S2 shows that imposing  as a constrain when fitting polarization curves in the overpotential range [-0.05 𝛼𝑎 + 𝛼𝑐 = 1

V, 0.05 V] always leads to a good fit, even when the true  is 0 or 2. This is because in the range of  considered 𝛼𝑎 + 𝛼𝑐 ~ 𝜂

the manifestations of  and  are not very pronounced. The kinetic parameters obtained by imposing such constrain, 𝛼𝑎 𝛼𝑐

however, are significantly different, which can ultimately result in different mechanistic interpretation.

Figure S2. Simulated polarization curves (black dots) for kinetic limited systems with  1 a.u. and  (a) 0.01, (b) 0.25, (c) 𝑗0 = 𝛼𝑎 + 𝛼𝑐 =

0.5, (d) 0.75, (e) 1 and their fits to the Butler-Volmer equation (Eq. 1 in the main text, red lines) imposing  1.𝛼𝑎 + 𝛼𝑐 =

Similarly, different assumptions in the value of  can lead to discrepancies in the values of  when it is obtained 𝛼𝑎 + 𝛼𝑐 𝑗0

from the slope of the micropolarization region. Indeed, at very small overpotentials (i.e.,  0.03 V if  1 and |𝜂| < 𝛼𝑎 + 𝛼𝑐 =

 0.02 V if  2, see Figure S3) the Butler-Volmer equation can be linearized by the Taylor expansion |𝜂| < 𝛼𝑎 + 𝛼𝑐 =

:𝑒𝑥 ≈ 1 + 𝑥
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𝜂 =
1
𝑗0

𝑅𝑇

(𝛼𝑎 + 𝛼𝑐)𝐹
𝑗 (25)

Since the slope is proportional to ,  cannot be determined from the slope of the micropolarization region 1/𝑗0(𝛼𝑎 + 𝛼𝑐) 𝑗0

alone and the original Butler-Volmer equation (i.e., Eq. 1 in the main text) must be used. Nevertheless, several studies 

have used Eq. 25 to determine  for acidic HOR/HER on Pt by assuming that  is either one4,5 or two.6789 𝑗0 𝛼𝑎 + 𝛼𝑐

Figure S3. Simulated polarization curves (black dots) for kinetic limited systems with  1 a.u. and  (a) 0.01, (b) 0.25, (c) 𝑗0 = 𝛼𝑎 + 𝛼𝑐 =

0.5, (d) 0.75, (e) 1 and their fits to the Butler-Volmer equation (Eq. 1 in the main text, red lines) imposing  1.𝛼𝑎 + 𝛼𝑐 =

S5. Reversible vs. irreversible Koutecky-Levich equation

Table S1 show the kinetic parameters obtained from the polarization curves for Pt/C in 0.1 M KOH at 293 K using a RDE 

setup taken from Zheng et al.2 using: 

 (i) the reversible Koutecky-Levick equation in the HOR branch and the HER branch:

1
𝑗

=
1
𝑗𝑘

+
1
𝑗𝑑

(26)

 (ii) the irreversible Koutecky-Levick equation only in the HOR branch, assuming that the HER branch is free of 

mass transport effects

1
𝑗

=
1
𝑗𝑘

+
1

𝑗𝑙,𝑎
(27)

The differences between the kinetic parameters obtained from methods (i) and (ii) become more pronounced as the range 

of overpotential considered for the fitting is narrower, due to a strong dependence of these with the range of overpotential 

when using (ii). In the range 0.03 0.03, the transfer coefficients obtained from the irreversible Koutecky-Levich ‒ < 𝜂 <

equation are so overestimated that can result in misleading mechanistic interpretations. Figure S4 plots the kinetic currents 

estimated with both methods. 

It is hard to give a general estimate about the magnitude of the error when using the irreversible Koutecky-Levich equation 

for HOR/HER, since it depends on how strong mass transport effects are and also on the overpotential range considered 

for the fitting. For most electrochemical reactions where the offset potential is relatively large using the irreversible 

Koutecky-Levich equation is fine because  will be very close to the limiting anodic or cathodic current densities. 𝑗𝑑

However, it might lead to significantly different kinetic parameters when applied to the highly reversible HOR/HER simply 
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because the overpotentials can be really small.

Table S1. Differences between the kinetic parameters obtained from Eqs. 26 and 27 for RDE measurements of alkaline HOR/HER taken 

from Zheng et al.2 Three different overpotential ranges have been considered for the fitting. 

 (mA/cm2
disk)𝑗0 𝛼𝑎 𝛼𝑐

Overpotential range (V)
(i) Rev. KL (ii) Irrev. KL (i) Rev. KL (ii) Irrev. KL (i) Rev. KL (ii) Irrev. KL

0.05 0.05‒ < 𝜂 < 2.1 0.1± 1.5 0.1± 0.51 0.02± 0.66 0.02± 0.56 0.02± 0.71 0.02±

0.04 0.04‒ < 𝜂 < 1.9 0.1± 1.2 0.1± 0.55 0.04± 0.78 0.03± 0.62 0.04± 0.85 0.03±

0.03 0.03‒ < 𝜂 < 1.9 0.3± 1.0 0.1± 0.5 0.1± 0.87 0.06± 0.6 0.1± 0.97 0.06±

Figure S4. RDE polarization curve for alkaline HOR/HER on Pt/C taken from Zheng et al.2 (black dots), diffusion limited current ( , 𝑗𝑑

blue triangles), and kinetic current estimated from the reversible ( , red squares) and irreversible ( , magenta rhombuses) 𝑗𝑘.𝑟𝑒𝑣 𝑗𝑘,𝑖𝑟𝑟𝑒𝑣

Koutecky-Levich equations.

S6. Lower limit for the scan rate in CV/LSV experiments

The lower limit for the scan rate is determined by the mass transport boundary layer. Electrode reactions lead to natural 

convection in the solvent due to temperature gradients and density changes. Bockris suggests that the thickness of the 

natural convection boundary layer is around 5·10-4 m.10 When the electrode reaction starts, a diffusion layer will be formed 

at the electrode-solution interface. The thickness of this layer, , is:1 𝛿𝑖

𝛿𝑖 ≈ 2 𝐷𝑖𝑡 (28)

where  is the diffusion coefficient of species  and  is the time. For the CV/LSV analysis to be correct,  needs to be 𝐷𝑖 𝑖 𝑡 𝛿𝑖

small compared with 5·10-4 m. This means that, for a scan of 1 V and assuming  1·10-9 m2/s, the scan rate should be 𝐷𝑖 =

faster than 16 mV/s so that the measurements are not affected by convection. ~

S7. Fitting of experimental data

Figure S5. H2-pump PEMFC polarization curve for low loading Pt/C at 353 K taken from Neyerlin et al.11 (black dots, Figure 4 in the 

original work) and fit to the Butler-Volmer equation (red line).
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Figure S6. Black dots show RDE polarization curves for a) Pt/C in 0.1 M KOH at 294 K taken from Sheng et al.3 (Figure 7b in the 

original work), b) Pt(pc) disk in 0.1 M KOH at 293 K taken from Rheinländer et al.12 (Figure 2a in the original work) and c) Pt/C in 0.1 

M KOH at 293 K taken from Zheng et al.2 (Figure 3 in the original work). Blue dots show the corresponding concentration overpotential 

curves (i.e., ). Red dots show the calculated kinetic current  from the reversible Koutecky-Levich equation. Red lines show the fits 𝑗𝑑 𝑗𝑘

of  to the Butler-Volmer equation. Only values in the range [-0.05, 0.05 V] are considered for the fitting.𝑗𝑘
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