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Supporting Information 1: R1 /R2 relaxation rate analysis for mono- and bis-trityl radicals 

As this is a purely theoretical study, we consider it necessary to test our numerical simulations against 

experimental measurements. Given the paucity of solution-state NMR data about relaxation rates in 

biradicals, theoretical models were used to estimate electron longitudinal and transverse relaxation 

rates for trityl monoradicals – for which solution-state measurements have been reported in 1,2.  Fol-

lowing the treatment in 1, electron R1 rate for this radical will be assumed to have three contributions: 

  𝑅1,total =  𝑅1,local+ 𝑅1,BRW+ 𝑅1,solvent 

   ≈  𝑅1,local+ 𝑅1,BRW                 (S1a) 

Here R1,local is the self-relaxation rate arising from the local vibrational modes related to the stretching 

of bonds in the radical, and is a magnetic field independent contribution estimated by Eaton et al 1 as 

5.9 x 104 Hz for per-deutero and 6.1 x 104 Hz for per-protio trityls. The Redfield component: 
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is the relaxation rate which arises from the stochastic modulation of the radical’s g-tensor anisotropy 

and of the hyperfine interactions between the electron and the n protons interacting with it within 

the radical (that in the case of a trityl monomer can be considered approximately the same); this is 

the kind of rate computed in the main text based on Bloch-Redfield-Wangsness theory in terms of ∆G
2  

and ∆HF,intra
2  coupling strengths; i.e., of the second-rank norm Blicharsky squared,3 already mentioned 

in the main text and defined in Eq. S58 in Supporting Information 5, for the g-anisotropy and the hy-

perfine interaction tensors.  Finally, 
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is an ad hoc relaxation term, arising from the dipolar interaction between the electron and nsolv sol-

vent molecules; the coupling strength of this relaxation is given by the second-rank norm squared of 

the dipolar interaction tensor between the electron and the solvent protons ∆HF,inter
2 , and by a corre-

lation time 𝜏solvent. Eaton et al in 1 have estimated the R1,solvent in Eq. (S1c) as 𝜏solv = F 𝜏C, where F is a 
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ratio between the solvent correlation time and the trityl correlation time, that is different for each 

radical. As this latter term is much smaller than the remaining relaxation rates it is henceforth ignored 

in both the mono- and bi-radical estimations.  Finally, in a non-viscous solvent, the R2,total corresponds 

to R1,total + R2,BRW 1. The BRW theory predicts this second term to be: 
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               (S2)                                          

Table S1 compares the R1,total and R2,total values determined from Eqs. (S1a) and (S2), with values re-

ported experimentally in 1 for per-protio and per-deutero trityls at different fields. There is good 

agreement between both sets. Notice, however, that the low magnetic fields explored in this compar-

ison, it is the local vibrational modes contributing to R1,local that dominate the longitudinal- and trans-

verse relaxation rates.  As this parameter was estimated from the experimental data, the good agree-

ment is not surprising. 

Table S1: Comparison between T1 and T2 calculated using Eq. (S1a) and Eq. (S2) and experimental T1 and T2 in water for trityl-

CD3 and trityl-CH3 obtained from 1. n represents the number of trityl protons dipole-coupled to the radical. For trityl-CH3, the 

distances between the electron and all 36 protons in the radical were set equal to 5.3 Å.  

 

 

 

 

 

 

 

 

 

 

 

 

 

It is enlightening to extend this monoradical analysis to the case of trityl bi-radicals. In this case it is 

reasonable to assume that the contributions coming from solvent-induced and bond-vibration-in-

duced terms to R1 relaxation, will remain similar as those given in Table S1. The electron R1,BRW and 

R2,BRW longitudinal and transverse rates, however, will be significantly increased by the electron-elec-

tron dipolar interaction, and will now be dominated by 𝐽(0)-containing terms that depend on the ro-

tational correlation time but are independent of the magnetic field. A full analysis of these two terms 

using symbolic processing software4 leads to: 

Magnetic 
 field / T 

R1 from  
Eq. 1 / Hz 

Experimental  
R1 / Hz 

R2 from  
Eq. 2 / Hz 

Experimental  
R2 / Hz 

Trityl-CD3 radical, n = 0, 𝐑𝟏,𝐥𝐨𝐜𝐚𝐥= 0.59 x 105 Hz 

0.33 T  
(X-band) 

5.9x104 5.9x104 6.7x104 9.1x104 

0.11 T 
 (S-band) 

5.9x104 6.2x104 6.2x104 8.3x104 

0.03 T  
(L-band) 

5.9x104 7.2x104 6.2x104 8.3x104 

9 x10-3 T 
(250 MHz) 

6.2x104 / 6.2x104 9.1x104 

Trityl-CH3 radical → n = 36, 𝐑𝟏,𝐥𝐨𝐜𝐚𝐥 = 0.61 x 105 Hz 

0.33 T  
(X-band) 

6.2x104 6.2x104 2.3x105 1.1x105 

0.11 T 
 (S-band) 

6.6x104 7.1x104 1.0x105 1.1x105 

0.03 T  
(L-band) 

8.3x104 8.3x104 1.1x105 1.1x105 

9 x10-3 T 
(250 MHz) 

9.1x104 / 1.3x105 1.3x105 
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and 
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where the symbols are described in the Supplementary Information 5, and we have made a distinction 

between hyperfine couplings with n protons within the biradical (“intra”), and with one proton that 

belongs to the solvent (“inter”) and could be a target of Overhauser DNP (ODNP). At the fields of 

interest in our studies, all spectral densities that have the electron and the nuclear Larmor frequency 

in them can be disregarded. This leaves solely the terms involving zero-frequency spectral densities: 
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𝑅1,BRW is thus dominated by ∆EE
2 , i.e., by the dipolar interaction between electrons; and R2,BRW is dom-

inated by this term as well as by the second rank scalar products ℵG,ΣG and ℵHFC,ΣHF between the g-
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tensor of one electron and the sum of the two g-tensors, and by the hyperfine coupling between one 

electron and one proton, and the sum of the hyperfines of the two electrons and one proton, respec-

tively. The magnitudes of the coefficients in Eq. (S3) and Eq. (S4) for the case of a bistrityl-type birad-

ical, are shown in the Table S2.  These coefficients will scale according to spectral densities; Figure S1 

show how these BRW-derived R1 and R2 terms change with the biradical’s correlation time c. These 

rates should be compared with the relaxivity contributions arising from the vibrational local modes, 

which are likely to be in the order of what they were for the monotrityl radical i.e., ≈5.104 Hz. It follows 

that for the trityl bis-radical the contribution of these R1,local will no longer be dominant, primarily due 

to the onset of relaxation effects driven by ∆EE
2  and ℵG,ΣG (the latter mostly at the high fields of interest; 

Table 1). 

Table S2: Magnitude of the second-rank norm squared and the scalar products (defined in Supporting Information 5) pre-

dicted by Eqs. (S3) and (S6), for a trityl-based biradical with parameters as given in the Table 1. 

∆𝐀
𝟐  / ℵ𝐀,𝐁  Magnitude / (rad/s)2  

∆EE
2  2x1016 

ℵG,ΔG  472 

ℵG,ΣG 2x1017 

ℵEE,ΔG (ℵEE,−ΔG) 687699 / -687699 

ℵ(HFC,ΣHF),intra/ℵ(HFC,ΣHF),inter
1 1.30x1013 /4.9x1013 

ℵ(HFC,ΔHF),intra/ℵ(HFC,ΔHF),inter
1 1.34x1013 /5.1x1013 

1 The intra-molecular dipolar interaction between the electron and the methyl protons in each trityl group of the biradical 
was computed setting a proton-electron distance equal to 5.3 Å (between the proton and its closest electron; electron/pro-
ton hyperfine couplings between the two trityls in the molecule were disregarded). The inter-molecular dipolar interaction 
between the electron and the solvent was computed setting a proton-electron distance equal to 8.3 Å (again: between the 
proton and its closest electron only). 

Rates do not change also with the increase of the intra-molecular protons n in Eqs. (S3) - (S6), since 

the term containing ℵ(HFC,ΣHF),intra remains much smaller than the term containing ∆EE
2 , Fig. S1. 

 
Fig. S1: R1 and R2 electron relaxation rates predicted by Eq. (S5) and Eq. (S6) as a function of the 𝜏C of the biradical/proton 
triad and on the number of closest intramolecular protons n to an electron (36 in the case of a model bis-trityl). For these 
calculations Jex was set equal to +(𝜔E + 𝜔N), B0 was set equal to 14.08 T, and other simulation parameters are as given in 
the Table 1. The absence of a strong dependence with the number of protons reflects the dominant effects of electron-
electron dipole and g-tensor anisotropies on the relaxation processes, over hyperfine counterparts. 

It is enlightening to consider how this model predicts the electron saturation and J-DNP enhancement 

to proceed, as a function of the available microwave power. Considering that the rotational  correla-

tion time of the trityl monomer is about 150 ps –calculated from 𝜏C ≃ 𝑟D
2 𝐷𝑡⁄ ,5  where 𝐷𝑡  is trityl’s trans-

lational diffusion constant (in the order of ~10-9 m2 s-1) and 𝑟D is the minimum distance approach be-

tween an electron in the biradical and a proton in the solvent (estimated at about 5-10 Å)– we decided 

to set the rotational correlation time for the biradical/proton triad equal to τC≈500 ps (close to what’s 

expected for a trityl biradical). Figure S2 shows the predicted electron saturation and J-DNP 
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enhancement effects expected for this C as a function of microwave off-resonance offset and nuta-

tion field; similar enhancements and saturation behaviours are predicted for smaller and higher rota-

tional correlation times, up to 1 ns.  

 
Fig. S2: Maximum enhancement (absolute value over the thermal equilibrium) in J-DNP (on the left), achieved between 80- 

100 ms (depending on the microwave power and Δω), and absolute electron polarization, 𝐸̂Z, (on the right), as a function of 
μw frequency offset from the free electron Larmor frequency and of the μw nutation power, 𝜔μw. For these calculations 𝐽ex 

is equal to 𝜔E + 𝜔N, B0 is 14.08 T, 𝜏C = 500 ps for the biradical/proton triad, and other simulation parameters as given in the 
Table 1.   

A comparison between the J-DNP and the Overhauser DNP shows that in the electron/nucleus pair 
system, the ODNP case, the enhancement is strong if Bo < 0.5T, but decays to negligible values if Bo 
≥ 3.4 T; this is as expected from classical theories 6-10, while the transient J-DNP is observed also at B0 
≤ 3.4 T. 

 

Fig. S3: Time domain simulations showing the evolution of the enhancement observed under continuous microwave irradi-

ation of the electrons as a function of B0, in ODNP (on the top) and in JDNP (on the bottom). For ODNP an electron/proton 

dipolar-coupled pair system with c = 157 ps (typical of trityl 5) was assumed; for J-DNP a biradical/proton dipole-coupled 

triad with 𝜏C = 500 ps for the for the biradical/proton triad and 𝐽ex = +(𝜔E + 𝜔N) was assumed. Other simulation parameters 

are given in the Table 1.  

Overhauser DNP enhancements higher than those shown in Fig. S3, were observed at the magnetic 

fields of 1.4 T and 3.4 T, in water doped with trityl based mono radicals.11,12  Rotational diffusion was 

the sole DNP-enabling contribution that was considered in our simulations, but translational diffusion 

can also become an important mechanism of polarization enhancement in actual solvents11– explain-

ing the higher enhancements observed in the experimental measurements at these medium magnetic 

field strengths. 
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Supporting Information 2: The Hamiltonian used in the propagation of the biradical/nuclear system 
– from the Cartesian to the triplet-singlet representations 

The laboratory frame Hamiltonian for a three-spin system composed by two electrons and one proton, 

where the electrons are connected by dipolar and exchange couplings, and the proton interacts with 

the electrons through hyperfine (dipolar) coupling only, can be written using single-spin Cartesian op-

erators, as: 
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where  𝐙E
(𝑘) are the Zeeman tensors (including g-anisotropy) of electron spins k=1,2; 𝐙N is the Zeeman 

tensor of the sole nuclear spin being considered (including the chemical shift anisotropy); D is the 

inter-electron dipolar interaction tensor in the point magnetic dipole approximation; 𝐽ex is the inter-

electron scalar (aka “exchange”) coupling in angular frequency units; 𝐀(𝑘) is the hyperfine interaction 

tensors of the nucleus with the indicated electron k; B⃗⃗ 0 is the external magnetic field; and E⃗⃗ ̂(1), E⃗⃗ ̂(2) 

and N⃗⃗ ̂ are the Cartesian spin-1/2 operators for the two electrons and nucleus. A rotating frame trans-

formation with respect to the microwave frequency offset using the operator 𝜔μwoff ∑ 𝐸̂Z
(𝑘)

𝑘  and 

preservation of the usual secular and pseudosecular terms, leads to: 
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where 𝜔Σe  and 𝜔Δe are the sum and the difference between the rotating-frame offsets of the two 

electrons; AΣ = A1 + A2 and AΔ = A1 − A2; BΣ = B1 + B2 and BΔ = B1 − B2 are the sum and the differ-

ence of the secular and pseudo-secular coefficients describing the hyperfine interaction, respectively; 

and 𝜔1 = (𝐽ex + 2𝐃) and 𝜔2 = (𝐽ex − 𝐃), where D is the inter-electron dipolar interaction tensor.  

In the 𝐽ex ≫ 𝜔∆e case, where 𝜔∆e = 𝜔e1 − 𝜔e2 is the difference between the Larmor frequency of the 

two electrons, the electron Zeeman eigenstates |αe1βe2⟩ and |βe1αe2⟩ are no longer eigenfunctions of 

the spin Hamiltonian. We therefore express the Hamiltonian in the singlet/triplet electron basis sets 
13,14: 
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    (S9) 

where the direct product indicates that the {| } Zeeman basis is preserved for the nucleus 

(proton). The transformation of the three-spin rotating frame Hamiltonian from a Cartesian basis to 

its singlet/triplet basis can be performed using fictitious spin-½ operators. 15,16 Since the addition of a 

third nuclear spin has to our knowledge not been reported before, we re-express the rotating-frame 

Hamiltonian in Eq. (S8), as a sum of terms containing direct products of operators acting in the 𝑆̂0𝑇̂0 

and the 𝑇̂+1𝑇̂−1 subspaces, with the nuclear Zeeman base. The fictitious spin-1/2 operators that we 

use in this study to describe the 𝑆̂0𝑇̂0 and the 𝑇̂+1𝑇̂−1 subspaces follow from Vega’s notation for two-

spin fictitious operators17 and were computed using the SpinDynamica software18: 
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which we combine to obtain: 
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 − = −                                          (S13)                       

     

The longitudinal fictitious ½-spin operators for the electron in the 𝑆̂0𝑇̂0 are: 

( )0 0, ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

Z 0 0 0 0

1X 2X 1Y 2Y 1X 2X Z 1Y 2Y Z

1 ˆ ˆˆ ˆ ˆ, , , ,
2

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ       
2 2

T S e e e e e e e eL T T S S

E E E E E E N E E N

    = −

= − − − −

                      (S14)       

( )0 0, ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

Z 0 0 0 0

1X 2X 1Y 2Y 1X 2X Z 1Y 2Y Z

1 ˆ ˆˆ ˆ ˆ, , , ,
2

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ        
2 2

T S e e e e e e e eL T T S S

E E E E E E N E E N

    = −

= − − + +

                      (S15) 

( )0 0, ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

0 0 0 0

1Z 2Z 1Z 2Z Z Z

ˆ ˆˆ ˆ ˆ, , , ,

1ˆ ˆ ˆ ˆ ˆ ˆ        2
2 4

T S e e e e e e e eE T T S S

E E E E N N

    = +

= − − + +
E

                         (S16) 

( )0 0, ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

0 0 0 0

1Z 2Z 1Z 2Z Z Z

ˆ ˆˆ ˆ ˆ, , , ,

1ˆ ˆ ˆ ˆ ˆ ˆ        2
2 4

T S e e e e e e e eE T T S S

E E E E N N

    = +

= − + − +
E

                        (S17) 

from which we obtain:  

( ) ( )0 0,0 0,

2 Z Z 2 1X 2X 1Y 2Y
ˆ ˆ ˆ ˆ ˆ ˆT ST S
L L E E E E + = +                                       (S18) 

0 0,0 0,

1 1 1Z 2Z

ˆ ˆ 1 ˆ ˆ
4 2 8

T ST S
E E

E E


 
 +  

= − +   
  

E
                                      (S19) 

 

The transverse fictitious ½-spin operators for the proton in the 𝑆̂0𝑇̂0 subspace are: 

( )0 0, ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

X 0 0 0 0

1Z X 2Z X 1X 2Y Y 1Y 2X Y

1 ˆ ˆˆ ˆ ˆ, , , ,
2

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ         
2 2

S T e e e e e e e eL S T T S

E N E N E E N E E N

    = +

= − + −

                       (S20) 
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( )0 0, ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

X 0 0 0 0

1Z X 2Z X 1X 2Y Y 1Y 2X Y

1 ˆ ˆˆ ˆ ˆ, , , ,
2

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ         
2 2

T S e e e e e e e eL T S S T

E N E N E E N E E N

    = +

= − − +

                       (S21) 

 

from which we obtain the pseudo-secular component:  

 

( ) ( )0 0, 0 0,

X X 1Z 2Z X
ˆ ˆ ˆ ˆ ˆS T T S

B L L B E E N 

 + = −                                         (S22) 

 

Longitudinal fictitious ½-spin operators for the electron in the 𝑇̂+1𝑇̂−1 subspace are: 

 

( )

( ) ( )

1, ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

Z 1 1 1 1

1Z 2Z

1Z Z 2Z Z

1ˆ ˆ ˆ ˆ ˆ, , , ,
2

ˆ ˆ 1 1ˆ ˆ ˆ ˆ         
4 4 2 2

T T e e e e e e e e
L T T T T

E E
E N E N

    −+

+ + − −
= −

= + + +

                             (S23) 

( )

( ) ( )

1, ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

Z 1 1 1 1

1Z 2Z

1Z Z 2Z Z

1ˆ ˆ ˆ ˆ ˆ, , , ,
2

ˆ ˆ 1 1ˆ ˆ ˆ ˆ         
4 4 2 2

T T e e e e e e e e
L T T T T

E E
E N E N

    −+

+ + − −
= −

= + − −

                           (S24) 

( )1, ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

1 1 1 1

Z

1Z 2Z 1 2Z Z

ˆ ˆ ˆ ˆ ˆ, , , ,

ˆ
ˆ ˆ ˆ ˆ ˆ         2

2 4

T T e e e e e e e e

Z

E T T T T

N
E E E E N

    + −

+ + − −= +

= + + +
E

                      (S25) 

( )1, ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

1 1 1 1

Z

1Z 2Z 1Z 2Z Z

ˆ ˆ ˆ ˆ ˆ, , , ,

ˆ
ˆ ˆ ˆ ˆ ˆ          2

2 4

T T e e e e e e e eE T T T T

N
E E E E N

    + −

+ + − −= +

= − − +
E

                     (S26) 

from which we obtain:  

( ) ( )1,1,

Z Z1Z 2Z
ˆ ˆ ˆ2ˆ T TT T

ee
E L LE   −− ++

 
++ =                                               (S27) 

( ) ( )1,1,

1Z Z 2Z Z Z Z
ˆ ˆ ˆ ˆ ˆ ˆT TT T

A E N E N A L L  −− ++

 
+ = −                                         (S28) 

1,1,

1 1Z 2Z 1

ˆ ˆ1 ˆ ˆ
2 8 4

T TT T
E E

E E


 
−− ++ +

+ =
  
  

   

E
                                        (S29) 

Finally, we introduce new transverse fictitious ½-spin operators for the proton in the 𝑇̂+1𝑇̂−1 subspace 

given by: 

( )1, ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

X 1 1 1 1

X

1Z X 2Z X 1Z 2Z X

1ˆ ˆ ˆ ˆ ˆ, , , ,
2

ˆ1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ       
2 2 4

T e e e e e e e e
L T T T T

N
E N E N E E N

    +

+ + + +
= +

= + + +

                               (S30) 
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( )1, ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

X 1 1 1 1

X

1Z X 2Z X 1Z 2Z X

1ˆ ˆ ˆ ˆ ˆ, , , ,
2

ˆ1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ       
2 2 4

T e e e e e e e e
L T T T T

N
E N E N E E N

    −

− − − −
= +

= − − + +

                                (S31)    

which are needed to describe the pseudo-secular component:  

( ) ( )1, 1,

X X 1Z 2Z X
ˆ ˆ ˆ ˆ ˆT T

B L L B E E N + −

 − = +                                               (S32) 

The sum of these various terms, enables us to rewrite the Hamiltonian in Eq. (S8) under the action of 

microwave irradiation, as: 

0 0 1 1

μw
ˆ ˆ ˆ ˆS T T T

rotH H H H+ −= + +                                                         (S33) 

where the term acting in the 𝑆̂0𝑇̂0  space is 

( ) ( ) ( )

( )

0 0, 0 0, 0 0, 0 0,0 0, 0 0,0 0

0 0,0 0,

0 0,0 0,

X X X X X X

2 Z Z 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ
ˆ ˆ          

4

T S T S S T T ST S T SS T

e

T ST S
T ST S

H L L A L L B L L

E E
L L

    







 

  = + + − + + +

 +
− + −  

 

     (S34) 

the term acting in the 𝑇̂+1𝑇̂−1 space is: 

( ) ( ) ( )

( )

1, 1, 1,1,1 1 1

1,1,

1,1,

Z Z N Z X X

Z Z 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ
ˆ ˆ            

4

T T TTT T T

e y

T TT T
T TT T

H L L R N B L L

E E
A L L

  





  



 + −+ − 

+ −+ −

+ −+ −





= + + + −

 +
+ − +  

 

              (S35) 

and 𝐻̂μw = 𝜔μw(𝐸̂1X + 𝐸̂2X) is the microwave irradiation operator, with 𝜔µw the strength of its nutation 

frequency. Here 𝜔Σe and 𝜔Δe~ 0 are the sum and difference of the electron Larmor frequencies in the 

rotating frame, ( )1ˆT

yR   in Eq. (S35) is a rotation matrix about the y-axis that acts on both the α and β 

space; its associated 2𝜔𝑒 (𝐿̂Z

𝑇±1,𝛼 + 𝐿̂Z

𝑇±1,𝛽
) 𝑅̂𝑦

𝑇±1(𝜃) term then corresponds to 𝜔𝑒cos(𝜃) (𝐿̂Z

𝑇±1,𝛼 + 𝐿̂Z

𝑇±1,𝛽
) +

𝜔𝑒sin(𝜃)(𝐸̂1X + 𝐸̂2X), with 𝜃 = arctan(𝜔µw 𝜔Σe⁄ ) the angle felt by the electron’s effective field, and 𝜔𝑒 =

√𝜔Σe
2 + 𝜔μw

2  the effective field’s strength. The matrix representation of Eq. (S33) is: 

( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)
0 1 0 1 0 1 0 1

( 1, 2) 1 2
0

( 1, 2) 1
1

0

sin

2

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , ,

ˆ , 0 0 0 0 0
4 2 2 2 2

ˆ , 0 cos 0 0 0 0
2 4 2 2

ˆ

e

e

e e e e e e e e e e e e e e e e

e e N

e e N
e

B

B

S T T T S T T T

A
S

A
T

T



 

       

  


 
  

 
 

   
 
 



+ − + −

 

 
+

+− − +

+ + +

( 1, 2) 1 2

( 1, 2) 1
1

( 1, 2) 1 2
0

( 1, 2) 1
1

sin sin

2 2

sin

2

, 0 0 0
2 4 2 2 2

ˆ , 0 0 cos 0 0 0
2 4 2 2

ˆ , 0 0 0 0 0
2 4 2 2 2

ˆ , 0 0 0 0 cos
2 2 4

e e

e

e

e

e e N

e e N
e

e e N

e e
e

B

B

B

B

A

A
T

A
S

A
T

   


 



  


 
  

  



  

   
   
   

 
 

  
 
 

 

 





 

 
−

 

 
+

+

−

− +

+

− + +

− + − +

− − −

− +

( 1, 2) 1 2
0

( 1, 2) 1
1

sin

2

sin sin

2 2

sin

2

0
2

ˆ , 0 0 0
2 2 4 2 2

ˆ , 0 0 0 0 0 cos
2 2 4 2

e

e e

e

e

N

e e N

e e N
e

B

B

A
T

A
T

 

   


 



  


 
  

 
 
 



   
   
   

 
 

  
 
 


 

 
−

− +

−

−

− + −

+ − −

 

(S36) 

Notice that these microwave-related terms act solely within the triplet manifold mixing the 𝑇̂±1
(𝑒1,𝑒2) 

and 𝑇̂0
(𝑒1,𝑒2)states, but do not involve the 𝑆̂0

(𝑒1,𝑒2) singlet. The latter, however, is not isolated: it gets 
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connected to 𝑇̂0
(𝑒1𝑒2) via the difference in secular hyperfine couplings with the nucleus A∆. Additional 

simulations –not shown– demonstrate that the pseudosecular terms are not essential for describing 

the J-DNP effect. 
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Supporting Information 3: Defining the biradical/nuclear system population operators describing 

the J-DNP enhancement 

The main text defines 𝑆̂0𝑁̂Z, 𝑇̂±1𝑁̂Z and 𝑇̂0𝑁̂Z operators and relates these to the differences between 

the population operators 𝑂𝛼and 𝑂𝛽 (defined below), leading to the predicted nuclear polarization en-

hancement.  As these three-spin states have to our knowledge not been previously defined, we sum-

marize them here. To do this we rely again on Vega’s two-spin triplet/singlet (TS) population opera-

tors, 15 and we direct-product them with a nuclear spin state that can be in either the α or β state. 

These can be written in terms of single-spin product operators, as: 

 
( ) ( )

( ) ( ) ( )

( 1, 2) ( 1, 2)

0 0 1

Z

0,

Z Z Z

2 1 2

1Z 2Z 1 2 1 2 1Z 2Z

ˆ ˆ, ,
ˆ

ˆ ˆ1 1

8 4 4
ˆ

4

1 1 1

2 2 2

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

e e e e
S S

N
S E E E E

E E E E N E E N E E N

   − + + −

− + + −

= + − − +

− − −

=

−

E

             (S37) 

( ) ( ) ( )

( 1, 2) ( 1, 2)

1 1

Z 1Z

Z1Z 2

2Z

1,

ZZ 1Z 2Z 1Z 2ZZ

ˆ ˆ, ,
ˆ ˆ ˆ

ˆ

ˆ

8 4 4 4

1 1 1

2
ˆˆ ˆ ˆ ˆ ˆ ˆ

2 2
ˆ

e e e e
T T

N E E
T

E E E N E N E E N

  
  = + +=  +

+   +

E

                                    (S38) 

( ) ( )

( ) ( ) ( )

( 1, 2) ( 1, 2)

0 0 1

Z

0,

Z Z Z

2 1 2

1Z 2Z 1 2 1 2 1Z 2Z

ˆ ˆ, ,
ˆ

ˆ ˆ1 1

8 4 4
ˆ

1 1 1

2 2 2

ˆ ˆ
4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

e e e e
T T

N
T E E E E

E E E E N E E N E E N

   − + + −

− + + −

= = + + + +

− + −+

E

            (S39) 

( ) ( )

( ) ( ) ( )

( 1, 2) ( 1, 2)

0 0 1

Z

0,

Z Z Z

2 1 2

1Z 2Z 1 2 1 2 1Z 2Z

ˆ ˆ, ,
ˆ

ˆ ˆ ˆ ˆ ˆ
4

2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1 1

8 4 4

1 1 1

2
ˆ ˆ ˆ ˆ

2

e e e e
S S

N
S E E E E

E E E E N E E N E E N

   − + + −

− + + −

= − − − −

+

=

+ + +

E

            (S40) 

( ) ( ) ( )

( 1, 2) ( 1, 2)

1 1

1Z 2Z 1

1

Z

2

2Z 1Z

Z Z Z

1,

Z Z 2Z

ˆ ˆ, ,
ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ

8 4 4 4

ˆ1 ˆ1 1

2
ˆ

2
ˆ ˆ

2
ˆ

e e e e

Z

T T
N E E

T

E E E N E N E E N

  
  = − =  +

+ −

E

                                   (S41) 

( ) ( )

( ) ( ) ( )

( 1, 2) ( 1, 2)

0 0 1

Z

0,

Z Z Z

2 1 2

1Z 2Z 1 2 1 2 1Z 2Z

ˆ ˆ, ,
ˆ

ˆ ˆ1 1

8 4 4
ˆ

4

1 1 1

2 2 2

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

e e e e
T T

N
T E E E E

E E E E N E E N E E N

   − + + −

− + + −

= − + + −

+ −

=

− +

E

           (S42) 

Taking suitable differences among these states, leads to the longitudinal fictitious operators used in 

the main text (Figures 4-5) to describe how singlet and triplet states enhance the nuclear polarization: 

( )

( )

( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

0 Z 0 0 0 0

Z

Z Z Z1 2 1 2 1Z 2Z

1ˆ ˆ ˆ ˆ ˆˆ , , , ,
2

              
ˆ 1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2
ˆ ˆ

4

e e e e e e e e e e
S

N
E E N E E N E E

N S S

N

S S   

− + + −

=

− + −

−

=

                           (S43)     
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( )

( )

( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

1 Z 1 1 1

Z1Z 2

1

Z

Z ZZ 1Z 2Z

1ˆ ˆ ˆ ˆ ˆ ˆ, , , ,
2

             
ˆ 1 ˆ ˆ ˆ
4

 
2

ˆ ˆ ˆ ˆ

e e e e e e e e e e
T N T T T

N
E N E E N

T

N E

   
    

= −

= + +

                           (S44) 

( )

( )

( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2) ( 1, 2)

0 Z 0 0 0 0

Z

Z Z Z1 2 1 2 1Z 2Z

1ˆ ˆ ˆ ˆ ˆ ˆ, , , ,
2

              
ˆ 1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2
ˆ ˆ

4

e e e e e e e e e e
T

N
E E N E E N E E

N T T

N

T T   

− + + −

=

+ + −

−

=

                          (S45) 
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Supporting Information 4: Additional Redfield-derived relaxation rates for the biradical/nuclear sys-

tem 

The main text presented a simplified version of the relaxation rates of 𝑆̂0,𝛼/𝛽, 𝑇̂0,𝛼/𝛽 and 𝑇̂±1,𝛼,𝛽, whose 

full expressions are provided here.  For 𝑆̂0,𝛼/𝛽 these were: 

( ) ( ) ( ) ( )

( ) ( ) ( )

22 2 2

CSAHF HF HF

ex E N ex E N N ex N

2 2 2

HF G, G- HF HF G, G- HF HF G, G- HF

ex ex E ex E

0,
180 30 15 60

4 4 4

90 120 12

ˆ

0

R J J J J J J J

J J J J

S

J J

      

 

  

           

  
 − = − + + + + + + + +
 

      +   +   +      
+ + − + +

   (S46) 

and 

( ) ( ) ( ) ( )

( ) ( ) ( )

22 2 2

CSAHF HF HF

ex E N ex E N N ex N

2 2 2
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(S47) 

For the 𝑇̂+1,𝛼/𝛽 states these were:  
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             (S48) 

and 
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              (S49) 

For the 𝑇̂0,𝛼/𝛽, the self-relaxation rates are 

( ) ( )

( ) ( )

2 2

CSA HF

N ex N

2 2 2

HF G, G HF EE HF G, G- HF

e E

0,

x

15 60

4 6 5 6

90 0

ˆ

9

R J J J

J J

T

J

  





   −    

 
 − = + − +
 

    +   +  +    
+ +

                       (S50) 
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                 (S51)            

And for 𝑇̂−1,𝛼/𝛽 the self-relaxation rates were: 
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                     (S52) 

and 
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                 (S53) 

These expressions were all derived taking the possibility of having the spins’ relaxation driven by the 

nuclear chemical shift anisotropy tensor (CSA), by ∆𝐆 = 𝐆𝟏 − 𝐆𝟐 and by ∆𝐇𝐅 = 𝐇𝐅𝐂𝟏 − 𝐇𝐅𝐂𝟐 ani-

sotropies deriving from tensors associated to the differences between the two g- and electron/nuclear 

hyperfine coupling tensors, respectively; by tensors 𝚺𝐆 = 𝐆𝟏 + 𝐆𝟐 and 𝚺𝐇𝐅 = 𝐇𝐅𝐂𝟏 + 𝐇𝐅𝐂𝟐 associ-

ated to the sums of these two electron g- and hyperfine tensors, and by the 𝐄𝐄 interaction represent-

ing the dipolar tensor between the two. As is usual in spin relaxation theory 19,20, all these rates contain 

combinations of second-rank norms squared ∆𝐀
2  of all the aforementioned tensors A, second-rank 

scalar products ℵ𝐀,𝐁 of 3x3 tensors A and B 3, and linear combinations of these products among various 

tensors, as given in Supporting Information 5. Figures S4 and S5 below expand this matter further, by 

showing how rates of 𝑆̂0,𝛼/𝛽, 𝑇̂0,𝛼/𝛽  and 𝑇̂±1,𝛼/𝛽 vary, when 𝐽ex matches ±(𝜔E + 𝜔N)  – this time as a 

function of B0 and τC. 

 
Fig. S4: Numerically calculated self-relaxation rates of 𝑆̂0,𝛼/𝛽, 𝑇̂0,𝛼/𝛽  and 𝑇̂±1,𝛼/𝛽as a function of B0 and of the 𝜏C of the 

biradical/proton triad, when 𝐽ex is positive and equal to 𝐽ex = −(𝜔E + 𝜔N). Other simulation parameters are given in Table 

1.   
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Fig. S5: Numerically calculated self-relaxation rates of 𝑆̂0,𝛼/𝛽, 𝑇̂0,𝛼/𝛽  and 𝑇̂±1,𝛼/𝛽as a function of 𝐵0 and of the 𝜏C of the 

biradical/proton triad, when 𝐽ex is negative and equal to 𝐽ex = +(𝜔E + 𝜔N). Other simulation parameters are given in Table 

1.     

Notice how these rates decrease with magnetic field and change differentially for  states with the 

correlation time. The main text presented how the rates of 𝑆̂0,𝛼/𝛽, 𝑇̂0,𝛼/𝛽 and 𝑇̂±1,𝛼/𝛽 changed with ex-

change coupling and magnetic field, according to numerical and analytical predictions. For completion 

this section derives the expressions predicted by this theory, for the 𝑁̂Z𝑇̂±1, 𝑁̂Z𝑇̂0 and 𝑆̂0𝑁̂Z states. 
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where the meaning of the various constants and functions are the same as in Eqs. (S46) - (S53). Figures 

S6 and S7 present how these rates depend on the magnetic fields and on the rotational correlation 

times.   

 
Fig. S6: Self-relaxation rates of 𝑁̂Z𝑆̂0, 𝑁̂Z𝑇̂±1 and 𝑁̂Z𝑇̂0 states calculated as a function of B0 and of the 𝜏C of the biradical/pro-

ton triad, for  𝐽ex = −(𝜔E + 𝜔N). Other simulation parameters are given in Table 1.     

 
Fig. S7: Self-relaxation rates of 𝑁̂Z𝑆̂0, 𝑁̂Z𝑇̂±1 and 𝑁̂Z𝑇̂0 states calculated as a function of B0 and of the 𝜏C of the biradical/pro-

ton triad, at  𝐽ex = +(𝜔E + 𝜔N). Other simulation parameters are given in Table 1. 
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Supporting Information 5: Additional information about the Redfield analysis of the biradical/nu-

clear system 

The rate expressions derived by the Redfield theory analysis for the three-spin system in Eqs. (5)-(12) 

of the main text, and in Eqs. S1 - S6 and S46 -S57 in the Supporting Information, were expressed on 

the basis of the second-rank square norms and scalar products of 3x3 tensors: 
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where Δ𝐀 is the second-rank norm squared of a tensor A and  ℵ𝐀,𝐁 is the second-rank scalar product 

between two 3×3 interaction tensors A and B. They can also contain linear combinations of more than 

two tensors and are often expressed based on the following algebraic relation: 
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Supporting Information 6: J-DNP enhancements for other kinds of biradical/nuclear systems 

Table 1 in the main text focused on one combination of electron and nuclear spin coupling parameters, 

leading to the features noted in the paper. The two electrons had identical g-tensors, with electron 

and nuclear Zeeman couplings made anisotropic for the sake of realism. This section summarized four 

additional sets of combinations, as per the parameters summarized in Table S3. These include (i) the 

same coupling parameters as in Table 1 but for a different placement of the nucleus, which was now 

assumed devoid of chemical shift anisotropy; (ii) same parameters as in Table 1 but now with electron 

sites endowed with identical rhombic g-tensors; (iii) same parameters as in Table 1 but now with the 

electrons devoid of g-anisotropies; (iv) same parameters as in Table 1 but now with electron sites 

endowed with different isotropic g-tensors. The systems in the Table S3 thus contain axial, rhombic 

and isotropic g-tensors –in the latter case with coinciding and non-coinciding isotropic values.  For the 

sake of conciseness, only the time-domain J-DNP transient enhancements were calculated for these 

scenarios –using the single optimal 𝐽ex = +(𝜔E + 𝜔N) but as function of Bo and c. These are shown in 

Figures S8-S11. Note how similar is the behaviour for all these systems, when compared with that 

shown in Figure 3.  

Table S3: Biradical / proton magnetic resonance parameters used in the simulations shown in Figures S8-S11. Each electron 
in the biradical had its parameters modelled on a trityl center, and the nucleus was placed along the linker closer to one of 

the electrons. Bo, Jex and c for the biradical/proton triad were set as described in the figures; all other hyperfine coupling 
parameters relied on the distances. 

Parameter System i System ii System iii System iv 
1H chemical shift 
 tensor, ppm 

[10 10 10] [5 10 20] [5 10 20] [5 10 20] 

g-tensor1 for the  
electron 1 and 2,  
Bohr magneton 

[2.0032 
2.0032  

 2.0026] 

[2.0030  
2.0025  

 2.0020] 

[2.0032  
2.0032  
2.0032] 

g1=[2.0032  
       2.0032  

        2.0032] 
g2=[2.0027  
       2.0027  

        2.0027] 
1H coordinates, [x y z], Å [-3 0.5 1.3]  [-3 0.5 1.3]  [-3 0.5 1.3]  [-3 0.5 1.3]  

Electron 1  
coordinates, [x y z], Å 

[0  0  -9.37] [0  0  -9.37] [0  0  -9.37] [0  0  -9.37] 

Electron 2  
coordinates, [x y z], Å 

[0  0  9.37] [0  0  9.37] [0  0  9.37] [0  0  9.37] 

Scalar relaxation  
modulation depth /GHz 

3 3 3 1 

Scalar relaxation  
modulation time, ps 

1 1 1 1 

Temperature/ K 298 298 298 298 
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Fig. S8: Time domain simulations showing the evolution of the transient J-DNP enhancement as a function of B0 and of 𝜏C. 

For all fields 𝐽ex was tuned to +(ωE + ωN), using the parameters of the system (i) in Table S3.  

 
Fig. S9: Time domain simulations showing the evolution of the transient J-DNP enhancement as a function of B0 and of 𝜏C. 

For all fields 𝐽ex was tuned to +(𝜔E + 𝜔N) , using the parameters of the system (ii) in Table S3.  
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Fig. S10: Time domain simulations showing the evolution of the transient J-DNP enhancement as a function of B0 and of 𝜏C. 

For all fields 𝐽ex was tuned to +(𝜔E + 𝜔N), using the parameters of the system (iii) in Table S3. 

Fig. S11: Time domain simulations showing the evolution of the transient J-DNP enhancement as a function of B0 and of 𝜏C. 

For all fields 𝐽ex was tuned to +(𝜔E + 𝜔N), using the parameters of the system (iv) in Table S3.  

Despite the noted similarity among all these cases, it is important to remark that cases will also arise 

where the J-DNP enhancement will be “killed”, Figures S12 - S14 include three of such instances. In 

the first of these, the nucleus is symmetrically placed in-between two identical electrons, that would 

otherwise lead to enhancement; this makes the differential “CIDNP-like” effect stop working.  J-DNP 

requires differential hyperfine couplings driving a differential relaxation-based “nuclear spin-state fil-

ter”, in their absence, for instance if the nucleus is symmetrically placed between the two electrons 

(Supporting Figure S12), no enhancement results. The second case involves two electron sites en-

dowed with different anisotropic g-tensors (Supporting Figure S13); in such instance the ℵ∆G,ΔG±ΔHF  
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terms overtake the ∆HFC
2  in Eqs. (5) – (12), robbing J-DNP for its efficiency even when 𝐽ex =

± (𝜔E + 𝜔N). Notice that this does not happen when 𝑔1,iso = 𝑔2,iso (Supporting Figure S11), as the 

ℵ∆G,ΔG±ΔHF terms still remain then smaller than ∆HFC
2  . Finally, the enhancement will tend to zero if the 

nucleus remains too distant from the biradical: for instance, a proton placed 20 Å away from the bi-

radical that may require over 1 s to achieve significant polarization gains, a time by which the DNP 

effect will lose against competing pathways. Interestingly, despite J-DNP’s origin in effects related to 

second-rank spherical anisotropies, its nuclear enhancement never changes sign (Supporting Figure 

S14). 

 
Fig. S12: Time domain simulations showing the evolution of the transient J-DNP enhancement as a function of B0 and of 𝜏C. 

For all fields 𝐽ex was tuned to +(𝜔E + 𝜔N), using the parameters of the system in Table 1, but with the proton placed sym-

metrically in the biradical’s centre (i.e, at [0 0 0] Å). 

 

Fig. S13: Time domain simulations showing the evolution of the transient J-DNP enhancement as a function of B0 and of 𝜏C. 

For all fields 𝐽ex was tuned to +(𝜔E + 𝜔N), using the same parameters as in Table 1 but now with electron sites endowed 

with different anisotropic g-tensors equal to: g1=[2.0032 2.0032 2.0026] and g2=[2.0032 2.0032 2.0023]. 
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Fig. S14: Maximum enhancement (amplitude of 𝑁̂Z normalized to the thermal equilibrium value of a single proton at the 

same magnetic field) achieved within 20 ms of microwave irradiation at the electron Larmor frequency, as a function of 

random 1H-coordinates surrounding a model biradical. Parameters included B0 = 14.08 T, τc = 500 ps of the biradical/proton 

triad, other conditions as given in Table 1. Notice the negative enhancement displayed by all positions surrounding the rad-

ical. This is important, as otherwise the spatial averaging brought about by molecular translations, could end up being smaller 

or even zero.  
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