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Synthesis 

 

Figure S1. 1H-NMR spectrum of 4´-[2-(1-Methoxyethoxy)ethoxy]2,2´:6´,2´´-terpyridine (1), 300 MHz, CDCl3. 
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UV-Vis measurements 

The zinc terpyridine bond dissociation time is determined by time-depending UV-Vis monitoring of 

the MLCT band at 336 nm. The time-trace is fitted to an exponential function as pseudo first-order 

conditions are assumed: 

with an offset A, the maximum absorbance B, the characteristic relaxation time dilute. Similar to Tang 

et al.,1 several approximations are made, for example that only the forming Cu(II)-terpyridine 

complexes are contributing to the monitored MLCT band. 

 

Rheology 

 

Figure S2. (A) Exemplary frequency-depending storage (open circles) and loss (open squares) modulus of a tetra-arm PEG-
terpyridine gel (DMF, 10 wt%) at 25 °C and fit to a Maxwell type relaxation model (black dashed line). The residual is depicted 

as light blue line. (B) Resulting relaxation time distribution H() of the same gel. 

 

Figure S3. Standard deviation ² of the relaxation time distribution of a 10k (10% (wt/v), red symbols) and a 20k (20% (wt/v), 
blue symbols) zinc tetra-arm PEG-terpyridine gel (DMF) depending on the temperature. Errorbars represent uncertainties 
within 95% confidence interval.  

𝐴𝑏𝑠(𝑡) = 𝐴 − 𝐵 ∙ exp (−
𝑡

𝜏𝑑𝑖𝑙𝑢𝑡𝑒
)  (1) 

(A) (B) 
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Light Scattering 

 

Figure S5. 
〈𝑟𝑎𝑡𝑖𝑜〉

𝐷𝐺𝑒𝑙,𝑓𝑎𝑠𝑡
 vs. <ratio> shows a linear dependence at three different temperatures 25 °C (A), 35 °C (B), and 45 °C (C). 

2

𝑠𝑙𝑜𝑝𝑒
 yields the partial heterodyne diffusion coefficient DPHD of the fast relaxation mode. 

 

 

Figure S4. Arrhenius plot (ln(k) vs. T–1) of the relaxation rates k = τ–1 obtained by oscillatory shear rheology of a 10k (green 
open diamonds) and a 20k (purple open squares) gel. 
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Figure S6. Distribution of stretch exponents α of a zinc tetra-arm PEG-terpyridine gel (10% (wt/v), DMF) at 25 °C (A), 35 °C 
(B), and 45 °C (C) at an angle of 30 °. α is decreasing with increasing temperature.  

 

 Figure S7. Frequency distribution histogram of the slow relaxation times at (A) 25 °C, (B) 35 °C, and (C) 45 °C. With increasing 

temperature  shifts to lower values and the distribution broadens.  
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(A) (B) 

Figure S8. (A) Arrhenius plot of the temperature-dependent slow relaxation times obtained by either fitting all single 500 

intensity correlation functions and subsequent averaging over the obtained 500 slow values (blue) or fitting the average of 5 x 
100 correlation functions, respective (red). (B) Exemplary average correlation function (five 100-packs) at 25 °C (yellow), 
35 °C (red), and 45 °C (maroon). 

(A) (B) 

Figure S9. (A) Pre-factors of the Arrhenius law obtained by UV-vis measurements (dilute conditions), rheology, forced 
Rayleigh scattering, and dynamic light scattering. Error bars depict uncertainties within a 95% confidence interval. (B) Pre-
factors vs. activation energy. 
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Forced Rayleigh Scattering. 

The d²-spacing dependence of <> is fitted to a previously described two-state model.1,3–5 In summary, 

the model assumes the polymer to be present in two states: an immobile associated state (A, where 

its transient junctions are connected to the network) and a molecular state (M, where it is free to 

diffuse). Both states are characterized by their diffusivities DA and DM. Following pseudo-first order 

kinetics, the polymers transform between both states and the concentration changes CM and CA over 

time are described by the following equations: 

kon and koff denote the reaction rates of the interconversion process. By fitting the model to the data, 

the three parameters koff, 𝐷𝑀,𝑒𝑓𝑓 =
𝐷𝑀

(1+𝐾𝑒𝑞)
 with 𝐾𝑒𝑞 =

𝑘𝑜𝑛

𝑘𝑜𝑓𝑓
, and Keq with 𝛾 =

𝐷𝐴

𝐷𝑀
 are obtained. Keq 

is anti-proportional to the width of the superdiffusive regime and can therefore be seen as a 

quantitative measure. 𝐷𝑀,𝑒𝑓𝑓 at large length scales denotes an effective reduced diffusivity reflecting 

a superpositon of all relaxation modes (e. g. hopping, walking…).6  
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𝜕𝐶𝑀

𝜕𝑡
= 𝐷𝑀

𝜕2𝐶𝑀

𝜕𝑥2
− 𝑘𝑜𝑛𝐶𝑀 + 𝑘𝑜𝑓𝑓𝐶𝐴  (6) 

𝜕𝐶𝐴

𝜕𝑡
= 𝐷𝐴

𝜕2𝐶𝐴

𝜕𝑥2
+ 𝑘𝑜𝑛𝐶𝑀 − 𝑘𝑜𝑓𝑓𝐶𝐴  (7) 


