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Figure S1. 1H-NMR spectrum of 4’-[2-(1-Methoxyethoxy)ethoxy]2,2":6",2""-terpyridine (1), 300 MHz, CDCls.
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UV-Vis measurements

The zinc terpyridine bond dissociation time is determined by time-depending UV-Vis monitoring of
the MLCT band at 336 nm. The time-trace is fitted to an exponential function as pseudo first-order
conditions are assumed:

Abs(t) = A— B -exp (— Tdi:ute) (1)

with an offset A, the maximum absorbance B, the characteristic relaxation time Tgiute. Similar to Tang
et al.! several approximations are made, for example that only the forming Cu(ll)-terpyridine
complexes are contributing to the monitored MLCT band.
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Figure S2. (A) Exemplary frequency-depending storage (open circles) and loss (open squares) modulus of a tetra-arm PEG-
terpyridine gel (DMF, 10 wt%) at 25 °C and fit to a Maxwell type relaxation model (black dashed line). The residual is depicted
as light blue line. (B) Resulting relaxation time distribution H(t) of the same gel.
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Figure S3. Standard deviation 2 of the relaxation time distribution of a 10k (10% (wt/v), red symbols) and a 20k (20% (wt/v),
blue symbols) zinc tetra-arm PEG-terpyridine gel (DMF) depending on the temperature. Errorbars represent uncertainties
within 95% confidence interval.
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Figure S4. Arrhenius plot (In(k) vs. T-1) of the relaxation rates k = T obtained by oscillatory shear rheology of a 10k (green
open diamonds) and a 20k (purple open squares) gel.
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Figure S5. ;m—m) vs. <ratio> shows a linear dependence at three different temperatures 25 °C (A), 35 °C (B), and 45 °C (C).
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yields the partial heterodyne diffusion coefficient Dpnp of the fast relaxation mode.
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Figure S6. Distribution of stretch exponents a of a zinc tetra-arm PEG-terpyridine gel (10% (wt/v), DMF) at 25 °C (A), 35 °C
(B), and 45 °C (C) at an angle of 30 °. a is decreasing with increasing temperature.
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Figure S7. Frequency distribution histogram of the slow relaxation times at (A) 25 °C, (B) 35 °C, and (C) 45 °C. With increasing
temperature 7 shifts to lower values and the distribution broadens.
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Figure S8. (A) Arrhenius plot of the temperature-dependent slow relaxation times obtained by either fitting all single 500
intensity correlation functions and subsequent averaging over the obtained 500 Tow values (blue) or fitting the average of 5 x
100 correlation functions, respective (red). (B) Exemplary average correlation function (five 100-packs) at 25 °C (yellow),

35 °C (red), and 45 °C (maroon).
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Figure S9. (A) Pre-factors of the Arrhenius law obtained by UV-vis measurements (dilute conditions), rheology, forced
Rayleigh scattering, and dynamic light scattering. Error bars depict uncertainties within a 95% confidence interval. (B) Pre-
factors vs. activation energy.
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Forced Rayleigh Scattering.

The d?-spacing dependence of <t> is fitted to a previously described two-state model.*> In summary,
the model assumes the polymer to be present in two states: an immobile associated state (A, where
its transient junctions are connected to the network) and a molecular state (M, where it is free to
diffuse). Both states are characterized by their diffusivities Da and Du. Following pseudo-first order
kinetics, the polymers transform between both states and the concentration changes Cy and Ca over
time are described by the following equations:

ac 9%¢C 6
a_:/[:DMﬁ_kOTLCM +k0ffCA ( )
ac a%c 7
—2=DaJ 5+ konCu — kosrCa )

kon and ko denote the reaction rates of the interconversion process. By fitting the model to the data,

the three parameters koft, Dy orf = DM \ith Keq = fon , and yKeq with y = g—“‘ are obtained. YKeq
M

(1+Keq) koff

is anti-proportional to the width of the superdiffusive regime and can therefore be seen as a
quantitative measure. Dy . at large length scales denotes an effective reduced diffusivity reflecting
a superpositon of all relaxation modes (e. g. hopping, walking...).5
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