SUPPORTING INFORMATION

Modelling quenching mechanisms of disordered molecular systems in presence of molecular aggregates.

Giacomo Fanciullo, ^a Irene Conti, ^a Pascal Didier, ^b Andrey Klymchenko, ^b Jérémie Léonard, ^c Marco Garavelli ^a and Ivan Rivalta*^{a,d}

^{a.} Dipartimento di Chimica Industriale "Toso Montanari", ALMA MATER STUDIORUM, Università di Bologna, Viale del Risorgimento 4, 40126 Bologna, Italia

^{b.} Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France

^c Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France

^{d.} Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France

Table of content

S.1 – The influence of initial exciton density (Figures S1)

S.2 – The influence of parameters at higher initial exciton density (Figures S2-S6)

S.3 – The influence of parameters at different energy transfer timescales (Figures S7-S10)

S.1 – The influence of initial exciton density

Figure S1. Effect of the initial exciton density $n_d(0)$ (expressed as % of C_d^{TOT}) on the (normalized) exciton density decay. Fixed parameters are: R_{d*d*} = 4 nm; R_{d*d} = 5 nm; R_{d*q} = 2 nm; τ_q = 4 ns; C_q = 0.25 % of C_d^{TOT} .

Figure S2. Effect of the R_{d*d*} radius governing the direct EEA mechanism on the (normalized) exciton density decay. Solid line: $n_d(0) = 25\%$; Dashed lines: $n_d(0) = 7\%$ (see Figure 4 in the main text). Fixed parameters are: $R_{d*d} = 5$ nm; $R_{d*q} = 2$ nm; $\tau_q = 4$ ns; $C_q = 0.25\%$ of C_d^{TOT} .

Figure S4. Effect of the quencher concentration C_q (expressed as % of C_d^{TOT}) on the (normalized) exciton density decay. Solid line: $n_d(0) = 25$ %; Dashed lines: $n_d(0) = 7$ % (see Figure 6 in the main text). Fixed parameters are: $R_{d*d} = 5$ nm; $R_{d*d*} = 4$ nm; $R_{d*q} = 2$ nm; $\tau_q = 4$ ns.

Figure S6. Effect of the quencher lifetime on the (normalized) exciton density decay. Solid line: $n_d(0) = 25\%$; Dashed lines: $n_d(0) = 7\%$ (see Figure 8A in the main text). Fixed parameters are: $R_{d*d} = 5$ nm; $R_{d*d*} = 4$ nm; $R_{d*q} = 2$ nm; $C_q = 0.25\%$ of C_d^{TOT}

Figure S3. Effect of the R_{d*d} radius governing the diffusive EEA mechanism on the (normalized) exciton density. Solid line: $n_d(0) = 25\%$; Dashed lines: $n_d(0) = 7\%$ (see Figure 5 in the main text). Fixed parameters are: $R_{D*D*} = 4$ nm; $R_{d*q} = 2$ nm; $\tau_q = 4$ ns; $C_q = 0.25\%$ of C_d^{TOT} .

Figure S5. Effect of the R_{d*q} radius (entering the expression for the diffusion coefficient) on the (normalized) exciton density decay. Solid line: $n_d(0) = 25 \%$; Dashed lines: $n_d(0) = 7 \%$ (see Figure 7 in the main text). Fixed parameters are: $R_{d*d} = 5$ nm; $R_{d*d*} = 4$ nm; $\tau_q = 4$ ns; $C_q = 0.25 \%$ of C_d^{TOT} .

S.2 – The influence of parameters at higher initial exciton density

S.3 – The influence of parameters at different energy transfer timescales

Figure S7. Effect of the R_{d*d*} radius governing the direct EEA mechanism on the (normalized) exciton density decay at different energy transfer timescales. A: $\tau_d = \tau_q = 4$ ns; B: $\tau_d = \tau_q = 4$ ps ; C: $\tau_d = \tau_q = 400$ fs. Fixed parameters are: $R_{d*d} = 5$ nm; $R_{d*q} = 2$ nm; $C_q = 0.25$ % of C_d^{TOT} ; $n_d(0) = 7$ % of C_d^{TOT} .

Figure S8. Effect of the R_{d*d} radius governing the diffusive EEA mechanism on the (normalized) exciton density decay at different energy transfer timescales. A: $\tau_d = \tau_q = 4$ ns; B: $\tau_d = \tau_q = 4$ ps; C: $\tau_d = \tau_q = 400$ fs. Fixed parameters are: $R_{d*d*} = 4$ nm; $R_{d*q} = 2$ nm; $C_q = 0.25$ % of C_d^{TOT} ; $n_d(0) = 7$ % of C_d^{TOT} .

Figure S9. Effect of the R_{d*q} radius governing the direct quenching mechanism on the (normalized) exciton density decay at different energy transfer timescales. A: $\tau_d = \tau_q = 4$ ns; B: $\tau_d = \tau_q = 4$ ps; C: $\tau_d = \tau_q = 400$ fs. Fixed parameters are: $R_{d*d*} = 4$ nm; $R_{d*d} = 5$ nm; $C_q = 0.25$ % of C_d^{TOT} ; $n_d(0) = 7$ % of C_d^{TOT} .

Figure S10. Effect of the quencher concentration C_q (expressed as % of C_d^{TOT}) on the (normalized) exciton density decay at different energy transfer timescales. A: $\tau_d = \tau_q = 4$ ns; B: $\tau_d = \tau_q = 4$ ps; C: $\tau_d = \tau_q = 400$ fs. Fixed parameters are: $R_{d*d*} = 4$ nm; $R_{d*d} = 5$ nm; $R_{d*q} = 2$ nm; $n_d(0) = 7$ % of C_d^{TOT} .