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1.  Gaussian basis set used in the calculations of BeH2 

 

In this study, we used the following contracted Gaussian basis set[S1,S2] for the UCCSD simulations of 

BeH2 systems.  

 

Beryllium 

   S       6 

     1           1267.0700000000  0.00194000 

     2            190.3560000000  0.01478600 

     3             43.2959000000  0.07179500 

     4             12.1442000000  0.23634800 

     5              3.8092300000  0.47176300 

     6              1.2684700000  0.35518300 

   S       3 

     1              5.6938800000 -0.02887600 

     2              1.5556300000 -0.17756500 

     3              0.1718550000  1.07163000 

   S       1 

     1              0.0571810000  1.00000000 

   P       3 

     1              5.6938800000  0.00483600 

     2              1.5556300000  0.14404500 

     3              0.1718550000  0.94969200 

 

Hydrogen 

   S       3 

     1             19.2406000000  0.03282800 

     2              2.8992000000  0.23120800 

     3              0.6534000000  0.81723800 

   S       1 

     1              0.1776000000  1.00000000 
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2.  The UCCSD and MR-UCCpGSD energies and wave functions of BeH2 with initial (unoptimized) 

amplitudes 

 

In this work, initial values of excitation amplitudes tijab and tia are prepared based on perturbation theory 

by using eqn (9)–(11) in the main text. The energy differences between the approximated and the full-CI 

wave functions and the square overlaps with the full-CI wave functions of BeH2 calculated from the UCCSD 

ansatzes with initially prepared (unoptimized) and optimized excitation amplitudes are summarized in Table 

S1, and those from VQE-MR-UCCpGSD are given in Table S2.  

 

Table S1  Deviation of the computed energy from the full-CI value and square overlap with the full-CI wave 

functions of BeH2 calculated from VQE-UCCSD simulations. 

Point 

RHF UCCSD (initial amp) UCCSD (optimized) 

E 

/kcal mol−1 
|⟨|full-CI⟩|2 

E 

/kcal mol−1 
|⟨|full-CI⟩|2 

E 

/kcal mol−1 
|⟨|full-CI⟩|2 

A 23.537 0.9713 2.567 0.9954 0.263 0.9996 

B 23.631 0.9719 2.497 0.9951 0.271 0.9996 

C 29.103 0.9489 4.507 0.9860 0.436 0.9988 

D 37.781 0.8781 8.498 0.9414 1.082[a] 0.9902[a] 

E 51.286 0.5244 18.946 0.6095 7.360[a] 0.7833[a] 

F 55.533 0.7994 13.851 0.9077 0.910[a] 0.9891[a] 

G 46.733 0.8839 9.204 0.9684 0.224 0.9995 

H 41.922 0.9030 7.522 0.9769 0.172 0.9996 

I 41.105 0.9071 7.241 0.9794 0.085 0.9998 

J 40.815 0.9079 7.173 0.9796 0.056 0.9998 

[a]Taken from unconverged UCCSD simulations after 10000 iterations.  

 

Table S2  Deviation of the computed energy from the full-CI value and square overlap with the full-CI 

wave functions of BeH2 calculated from VQE-MR-UCCpGSD simulations.  

Point 

CASSCF(2e,2o) 
MR-UCCpGSD  

(initial amp) 

MR-UCCpGSD  

(after 10000 iterations)[a] 

E 

/kcal mol−1 
|⟨|full-CI⟩|2 

E 

/kcal mol−1 
|⟨|full-CI⟩|2 

E 

/kcal mol−1 
|⟨|full-CI⟩|2 

D 33.452 0.9227 8.660 0.9804 0.946 0.9923 

E 40.378 0.8756 33.106 0.8837 2.143 0.9507 

F 41.843 0.8848 25.561 0.9151 0.829 0.9972 

[a]Taken from unconverged MR-UCCpGSD simulations after 10000 iterations.   
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3.  Trotter term ordering dependence on the UCCSD/STO-3G energy of BeH2 at point E 

 

It is known that Trotterized UCC ansatz is not equivalent to the original (un-Trotterized) ansatz, and 

ordering of the excitation operators in the Trotter decomposition affects the energy expectation value.[S3] It 

should be noted that dependence of the term ordering in Trotterized UCC ansatz implies that optimal values 

of the variational parameter also depend on the ordering of terms in Trotterized UCC ansatz. To disclose the 

effect of Trotter term ordering on the VQE-UCCSD energies, we have examined ten numerical simulations 

with randomly shuffled term orderings in BeH2 at point E, using STO-3G basis set. The ordering of terms is 

fixed during the VQE parameter optimizations, and other computational conditions such as optimization 

algorithm (COBYLA), initial excitation amplitudes (based on eqn (9) and (11) for tijab and tia, respectively) 

are fixed. The results of ten simulations are summarized in Table S3. The standard deviation for ten 

simulations is calculated to be 0.092 kcal mol−1, which is sufficiently smaller than the averaged EUCCSD−full-

CI value (2.812 kcal mol−1).  

 

Table S3. The VQE-UCCSD/STO-3G simulation results of BeH2 at point E, with randomly shuffled term 

ordering of cluster operators.  

Trial EUCCSD−full-CI/kcal mol−1 |⟨UCCSD|full-CI⟩|2 Number of iterations 

1 2.841 0.9616 3534 

2 2.834 0.9648 4268 

3 2.687 0.9705 4286 

4 2.842 0.9645 3865 

5 2.848 0.9626 3797 

6 2.745 0.9656 3937 

7 2.885 0.9609 4186 

8 2.830 0.9647 4149 

9 2.887 0.9613 3703 

10 2.724 0.9679 4322 
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4.  VQE-UCCSD/STO-3G simulations of LiH 

 

In order to check the optimization algorithm dependences and the initial excitation amplitude dependences 

on the energies and convergence behaviour of the UCCSD ansatz, we have carried out VQE-UCCSD/STO-

3G simulations of LiH molecule with interatom distances R(Li–H) = 1.0, 2.0, 3.0, and 4.0 Å. In the VQE 

simulations we examined three optimization algorithms, Nelder–Mead, Powell, and COBYLA. The quantum 

circuit simulations were performed with three different types of initial amplitudes for one-electron excitation 

operators, tia = 0, tia(unscaled) defined in eqn (10) in the main text, and tia(scaled) given in eqn (11) in the 

main text. The results for R(Li–H) = 1.0, 2.0, and 4.0 Å are summarized in Fig. S1–S3, respectively. The 

results for R(Li–H) = 3.0 Å are provided as Fig. 4 in the main text.  

Nelder–Mead shows strong initial amplitude dependence, and it converges to local minima if zero 

amplitudes for one electron excitations (tia = 0) is employed. Even if tia(unscaled) is used, variational 

optimization sometimes stops before achieving the global minimum. These results exemplify importance of 

the choice of initial amplitudes for tia when the variational optimization is carried out by using Nelder–Mead 

algorithm.  

By employing Powell and COBYLA algorithms, the VQE simulation converges to the global minimum 

regardless of the initial one-electron excitation amplitudes tia being adopted. The number of functional 

evaluations is larger than that in COBYLA. We concluded that COBYLA algorithm is the most plausible 

choice for the optimization algorithm among the three algorithms.  

 

 

Fig. S1  The VQE-UCCSD simulation results of the LiH molecule with R(Li–H) = 1.0 Å. 
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Fig. S2  The VQE-UCCSD simulation results of the LiH molecule with R(Li–H) = 2.0 Å. 

 

 

Fig. S3  The VQE-UCCSD simulation results of the LiH molecule with R(Li–H) = 4.0 Å. 
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5.  Initial amplitude dependences on the UCCSD wave functions of BeH2 

 

Initial amplitude dependences on the UCCSD wave functions and energies of BeH2 at points A, D, E, F, 

and I are plotted in Fig. S4. Similar to the VQE-UCCSD simulations of LiH molecule with COBYLA 

algorithm given in the rightmost of Fig. 4 in the main text and Fig. S1–S3, only small initial amplitude 

dependences were observed.  

 

 

Fig. S4  Convergence behaviours of the VQE-UCCSD simulations of BeH2 at points A, D, E, F, and I. 
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6.  The RHF, CASSCF, UCCSD, MR-UCCpGSD, and full-CI energies of BeH2 

 

Table S4. Total energies of BeH2 calculated at the RHF, CASSCF, UCCSD, MR-UCCpGSD, and full-CI 

level of theory.  

Point 
Energy/Hartree 

RHF CASSCF UCCSD MR-UCCpGSD Full-CI 

A −15.74166329  −15.77875126  −15.77917109 

B −15.69956729  −15.73679352  −15.73722506 

C −15.62844195  −15.67412549  −15.67481986 

D −15.56267647 −15.56957424 −15.62115918[a] −15.62137727[a] −15.62288406 

E −15.52118967 −15.53857310 −15.59119125[a] −15.59950447[a] −15.60291972 

F −15.53646854 −15.55828427 −15.62351516[a] −15.62364401[a] −15.62496586 

G −15.61872113  −15.69283741  −15.69319416 

H −15.66988195  −15.73641384  −15.73668815 

I −15.69537506  −15.76074379  −15.76087998 

J −15.69786116  −15.76281423  −15.76290316 

[a]Taken from unconverged simulations after 10000 iterations.  
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7.  Singlet and triplet instabilities of the Hartree−Fock wave functions in BeH2 

 

The stability of the Hartree–Fock wave functions[S4] are examined for points D, E, and F of BeH2. The 

calculations were performed by using Gaussian 16 (Revision B.01).[S5] The lowest three eigenvectors of 

points D, E, and F are listed below. At all the three points being investigated the spin-triplet B2 state has the 

lowest, negative eigenvalue of the stability matrix, indicating presence of the triplet instability at these points. 

At point E the singlet B2 state also has a negative eigenvalue. We also calculated the full-CI energy of the 1 

1B2 state at point E, obtaining E = −15.64804984 Hartree.  

 

Point D 

Eigenvector   1:      Triplet-B2   Eigenvalue=-0.0858502  <S**2>=2.000 

       2 ->  7         0.16011 

       3 ->  4         0.67065 

       3 ->  6        -0.10016 

  

 Eigenvector   2:      Singlet-B2   Eigenvalue= 0.0301214  <S**2>=0.000 

       3 ->  4         0.70290 

  

 Eigenvector   3:      Triplet-A1   Eigenvalue= 0.0373579  <S**2>=2.000 

       2 ->  4         0.35694 

       2 ->  8        -0.15021 

       3 ->  7         0.57942 

 

Point E 

Eigenvector   1:      Triplet-B2   Eigenvalue=-0.1261792  <S**2>=2.000 

       2 ->  6         0.15521 

       3 ->  4         0.67050 

       3 ->  8        -0.11586 

  

 Eigenvector   2:      Singlet-B2   Eigenvalue=-0.0025601  <S**2>=0.000 

       3 ->  4         0.70338 

  

 Eigenvector   3:      Triplet-A1   Eigenvalue= 0.0018909  <S**2>=2.000 

       2 ->  4         0.29929 

       2 ->  8        -0.15828 

       3 ->  6         0.61206 

 

Point F 

Eigenvector   1:      Triplet-B2   Eigenvalue=-0.1081938  <S**2>=2.000 
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       2 ->  4        -0.20130 

       2 ->  6         0.12540 

       3 ->  4         0.64022 

       3 ->  6         0.17084 

  

 Eigenvector   2:      Triplet-B1   Eigenvalue=-0.0375084  <S**2>=2.000 

       3 ->  5         0.70300 

  

 Eigenvector   3:      Triplet-B2   Eigenvalue= 0.0029764  <S**2>=2.000 

       2 ->  4         0.53036 

       2 ->  6        -0.10270 

       3 ->  6         0.43681 
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8.  Convergence behaviour of the VQE-UCCSD simulations in BeH2  

 

The difference between UCCSD and full-CI energies and the square overlap between UCCSD and full-CI 

wave functions are plotted in Fig. S5. The convergence is extremely slow for point E, although the variational 

optimizations converge rapidly for other geometries.  

 

 

Fig. S5  Convergence behaviour of the VQE-UCCSD simulations. The difference between UCCSD and 

full-CI energies (left) and the square overlap between UCCSD and full-CI wave functions (right). 
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8.  Fitting of the energy difference plots of BeH2 at point E 

 

Because numerical simulations of VQE at point E did not converge even after 10000 iterations, we have 

examined fitting the energy difference plots by using an exponential function E = axb, where x specify the 

iteration number. The results are plotted in Fig. S6. By using the data between 1000 and 10000 iterations, we 

can successfully be fitted by the convergence behaviour by the exponential function with a = 123.68 and b = 

−0.303 (UCCSD) and a = 1289.2 and b = −0.693 (MR-UCCpGSD). The fitted function is plotted in blue in 

Fig. S6.  

 

 

Fig. S6  The energy difference plots of BeH2 at point E and the exponential function obtained by curve 

fitting. 
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9.  The CCSD, CCSD(T), QCISD, and BD calculations of BeH2 at points D, E, and F 

 

To disclose complexity of the electronic structures at the geometry near avoided crossing in the Be + H2 

→ BeH2 reaction pathway, we carried out conventional CCSD, CCSD(T), QCISD, and Brueckner doubles 

(BD) calculations on classical computer by using Gaussian 09 (Revision B.01) software.[S6] Results of the 

quantum chemical calculations are summarized in Table S5.  

At the CCSD level, we performed a T1 diagnostic of Lee and Taylor.[S7] The T1 diagnostic computes the 

Euclidian norm of the t1 vector of the coupled cluster expansion normalized by the number of electrons 

included in the correlation procedure, which can be used to determine whether a single-reference-based 

electron correlation treatment is appropriate or not. According to the study by Lee and Taylor,[S7] multi-

reference electron correlation procedure is more appropriate for larger T1 value (e.g., > 0.02). The calculated 

T1 diagnostic value is 0.0280, 0.0368, and 0.0222 for point D, E, and F, respectively, indicating inaccurate 

description of electronic structures at the HF level. The differences of the CCSD and CCSD(T) energies are 

calculated to be 0.000700, 0.004383, and 0.000567 Hartree for point D, E, and F, respectively. The large 

energy difference between CCSD and CCSD(T) implies importance of connected triple excitations from the 

HF reference.  

We also calculated the energy difference between the average of QCISD and BD results and the CCSD 

energy defined in eqn (S1). The first difference between these methods occurs in the fifth-order perturbation 

theory, and departure of the E(Handy) value defined in eqn (S1) from zero indicates importance of 

disconnected T1 terms.[S8,S9]  

 ∆𝐸(Handy) =
1

2
(𝐸QCISD + 𝐸BD) − 𝐸CCSD    (S1) 

The E(Handy) value is calculated to be −0.000030, −0.000011, and 0.000000 Hartree for point D, E, and 

F, respectively. This result also indicates non-negligible contributions of the T1 terms at points D and E.  

 

Table S5. The CCSD, CCSD(T), QCISD, and BD energies and the T1 diagnostic values of BeH2 at points D, 

E, and F.  

Point 
ECCSD 

/Hartree 

T1 diagnostic 

 

ECCSD(T) 

/Hartree 

EQCISD 

/Hartree 

EBD 

/Hartree 

D −15.62179120 0.0280 −15.62249082 −15.62200368 −15.62163786 

E −15.59734086 0.0368 −15.60172428 −15.59680810 −15.59789601 

F −15.62418998 0.0222 −15.62475691 −15.62422262 −15.62415806 
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10.  The k-UpCCGSD/STO-3G simulations of BeH2 at point E 

 

The k-UpCCGSD ansatz[S10,S11] is defined by eqn (S2).  

 |Ψ𝑘−UpCCGSD⟩ = ∏ (𝑒𝑇𝑘−𝑇𝑘
†

)𝑘 |Φ⟩     (S2) 

Here, |Φ⟩ is a reference wave function. The cluster operator is applied k times to the reference wave 

function, where each k factor has variationally independent amplitudes. Tk consists of fully generalized one-

electron excitation operators as given in eqn (S4) and the generalized pair-double excitations as in eqn (S5). 

In this work, we assumed the dependence of the spin – and – transitions so as to |Ψ𝑘−UpCCGSD⟩ is spin 

symmetry-adapted. Tk
† is an adjoint of Tk, and it describes electron de-excitations from u-th orbital to the v-

th orbital.  

 𝑇𝑘 = 𝑇1,𝑘 + 𝑇2,𝑘       (S3) 

 𝑇1,𝑘 = ∑ 𝑡𝑢𝑣(𝑎𝑢𝛼
† 𝑎𝑣𝛼 + 𝑎𝑢𝛽

† 𝑎𝑣𝛽) √2⁄𝑢≠𝑣     (S4) 

 𝑇2,𝑘 = ∑ 𝑡𝑢𝑢𝑣𝑣𝑎𝑢𝛼
† 𝑎𝑢𝛽

† 𝑎𝑣𝛽𝑎𝑣𝛼𝑢≠𝑣      (S5) 

Here, u and v are general molecular orbital indices. In the k-UpCCGSD ansatz, (occupied → occupied) 

and (unoccupied → unoccupied) excitations as well as (occupied → unoccupied) excitations in the reference 

wave function are considered.  

In the k-UpCCGSD ansatz using VQE, it is difficult to estimate the initial amplitudes by means of 

perturbation theory. Thus, we started numerical simulations by setting all cluster amplitudes to zero. We 

carried out the k-UpCCGSD/STO-3G simulations with k = 1, 2, and 3, by using the HF and the 

CASSCF(2e,2o) orbitals as the reference.  

Results of the VQE numerical simulations of BeH2 at point E using k-UpCCGSD are summarized in Table 

S6. The simulations with the 3-UpCCGSD ansatz did not converge after 10000 iterations. According to our 

numerical simulations, the k-UpCCGSD ansatz with the CASSCF(2e,2o)/STO-3G reference orbital gave 

smaller E value and larger square overlap with the full-CI wave function. The 3-UpCCGSD/STO-3G 

energies after 10000 iterations are higher than that of UCCSD (E = 2.866 kcal mol−1) and MR-UCCGSD 

(E = 1.039 kcal mol−1), but we cannot exclude the possibility that 3-UpCCGSD can give lower energy than 

the UCCSD and MR-UCCpGSD, by improving initial amplitudes or by taking more iterations. 

 

Table S6. Results of the VQE simulations of BeH2 at point E using k-UpCCGSD ansatz.  

Reference 

orbitals 
k 

Ek-UpCCGSD−full-CI 

/kcal mol−1 
|⟨k-UpCCGSD|full-CI⟩|2 Number of iterations 

RHF 1 33.422 0.8037 2323 

 2 30.133 0.8747 6991 

 3 10.231[a] 0.8866[a] 10000 

CASSCF 1 31.107 0.8768 2915 

 2 31.037 0.8799 5371 

 3 6.907[a] 0.9384[a] 10000 

[a] The result from unconverged k-UpCCGSD simulation after 10000 iterations.  
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