Supplementary Information

Spectroscopic Observation and Ultrafast Coherent Vibrational Dynamics of the Aqueous Phenylalanine Radical

Muhammad Shafiq Bin Mohd Yusof,¹ Jing Xuan Siow,¹ Ningchen Yang,¹ Wei Xin Chan,¹ Zhi-Heng Loh^{1,*}

¹Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore

^{*} Corresponding author. E-mail: zhiheng@ntu.edu.sg

Section S1: Photon-order Measurements for the Strong-field Photodetachment of the Phenylalaninate Anion in Aqueous Solution

A power-dependence measurement is performed to determine the photon order of the strongfield photodetachment process of the phenylalaninate anion in aqueous solution. For an *N*photon photodetachment process, the differential absorption signal, ΔA , scales with intensity of the ionizing pump, *I*, as $\Delta A \propto I^N$. The photon-order measurements are performed by using a UV probe, which measures the absorption of the radical at a pump-probe time delay of 1 ps and at a probe wavelength of ~308 nm, corresponding to the maximum absorption of the Phe• radical. Hence, the absorption signal observed is proportional to the photodetachment yield.

To determine the photon order of the photodetachment process accurately, one must consider that electrons can originate from both the phenylalaninate and hydroxide anions during the photodetachment of the alkaline phenylalaninate solution. To account for the contribution from the photodetachment of hydroxide anions, we record the ΔA spectrum against the pump intensity for both the aqueous phenylalaninate and aqueous sodium hydroxide solutions under similar experimental conditions. The difference ΔA spectrum, i.e., the $\Delta\Delta A$ spectrum, is then obtained, which in principle corresponds to solely the ΔA signal from the photodetachment of phenylalaninate anion, shown in Fig. 3 of the main text. The $\Delta\Delta A$ signal is fit to the function

$$\Delta \Delta A = \alpha I^N / [1 + (I/I_{\text{sat}})^N], \qquad (1)$$

where α is the amplitude, *N* is the photon order and I_{sat} is the saturation intensity. The best fit when N = 3 yields $\alpha = (9.80 \pm 0.46) \times 10^{-41}$ cm⁶ W⁻³ and $I_{sat} = (1.15 \pm 0.02) \times 10^{13}$ W cm⁻². The value of *N* indicates that the photodetachment of phenylalaninate anion in aqueous environment occurs *via* a three-photon resonant enhancement process.

Section S2: Time-Dependent Density Functional Theory Calculations

We employ time-dependent density functional theory (TD-DFT), as implemented in the GAUSSIAN 16 program, to calculate the electronically excited states and the vertical excitation energies of the isolated phenylalaninate anion and microhydrated phenylalaninate anion Phe(H₂O)₁₀⁻. Geometry optimization of the isolated and microhydrated phenylalaninate anion is performed by using B3LYP/6-311G++(d,p). The geometry is then used in the TD-DFT calculations of the excited states. For the isolated phenylalaninate anion, the calculations identify two excited states (labelled #13 and #14) that are located 5.8 eV above the ground state and whose one-photon transition from the ground state bears significant oscillator strength. Information on the molecular orbitals that comprise each electronically excited state, along with their configuration interaction expansion coefficients, are given below. Note that the orbitals labelled 43 and 44 are the HOMO-1 and HOMO of the phenylalaninate anion, shown in Fig. 8 of the main text.

Excited State	13:	Singlet-A	5.7869	eV	214.25	nm	f=0.0446
43 → 47		0.13847					
43 → 48		0.19898					
43 → 49		0.17094					
43 → 50		0.13377					
43 → 53		-0.21341					
43 → 54		-0.19169					
$44 \rightarrow 49$		0.13867					
44 → 50		0.35004					
44 → 51		-0.21800					
44 → 53		0.21867					
44 → 54		0.12298					
Excited State	14:	Singlet-A	5.8302	eV	212.66	nm	f=0.0249
Excited State $43 \rightarrow 47$	14:	Singlet-A 0.28293	5.8302	eV	212.66	nm	f=0.0249
Excited State $43 \rightarrow 47$ $43 \rightarrow 48$	14:	Singlet-A 0.28293 0.40151	5.8302	eV	212.66	nm	f=0.0249
Excited State $43 \rightarrow 47$ $43 \rightarrow 48$ $43 \rightarrow 50$	14:	Singlet-A 0.28293 0.40151 0.14062	5.8302	eV	212.66	nm	f=0.0249
Excited State $43 \rightarrow 47$ $43 \rightarrow 48$ $43 \rightarrow 50$ $43 \rightarrow 53$	14:	Singlet-A 0.28293 0.40151 0.14062 -0.10366	5.8302	eV	212.66	nm	f=0.0249
Excited State $43 \rightarrow 47$ $43 \rightarrow 48$ $43 \rightarrow 50$ $43 \rightarrow 53$ $43 \rightarrow 54$	14:	Singlet-A 0.28293 0.40151 0.14062 -0.10366 -0.10163	5.8302	eV	212.66	nm	f=0.0249
Excited State $43 \rightarrow 47$ $43 \rightarrow 48$ $43 \rightarrow 50$ $43 \rightarrow 53$ $43 \rightarrow 54$ $44 \rightarrow 49$	14:	Singlet-A 0.28293 0.40151 0.14062 -0.10366 -0.10163 -0.13654	5.8302	eV	212.66	nm	f=0.0249
Excited State $43 \rightarrow 47$ $43 \rightarrow 48$ $43 \rightarrow 50$ $43 \rightarrow 53$ $43 \rightarrow 54$ $44 \rightarrow 49$ $44 \rightarrow 50$	14:	Singlet-A 0.28293 0.40151 0.14062 -0.10366 -0.10163 -0.13654 -0.14467	5.8302	eV	212.66	nm	f=0.0249
Excited State $43 \rightarrow 47$ $43 \rightarrow 48$ $43 \rightarrow 50$ $43 \rightarrow 53$ $43 \rightarrow 54$ $44 \rightarrow 49$ $44 \rightarrow 50$ $44 \rightarrow 51$	14:	Singlet-A 0.28293 0.40151 0.14062 -0.10366 -0.10163 -0.13654 -0.14467 0.24322	5.8302	eV	212.66	nm	f=0.0249
Excited State $43 \rightarrow 47$ $43 \rightarrow 48$ $43 \rightarrow 50$ $43 \rightarrow 53$ $43 \rightarrow 54$ $44 \rightarrow 49$ $44 \rightarrow 50$ $44 \rightarrow 51$ $44 \rightarrow 53$	14:	Singlet-A 0.28293 0.40151 0.14062 -0.10366 -0.10163 -0.13654 -0.14467 0.24322 -0.22775	5.8302	eV	212.66	nm	f=0.0249

For the microhyrated phenylalaninate anion $Phe(H_2O)_{10}$, the calculations identified four excited states (labelled #8 to #11) that are located 5.8 eV above the ground state, where excited state #9 and #10 bear the largest oscillator strength. Note that the orbitals labelled 93 and 94 are the HOMO-1 and HOMO of the microhyrated phenylalaninate anion.

```
5.7292 eV
Excited State 8:
                        Singlet-A
                                                216.41 nm
                                                            f=0.0038
      91 → 95
                 -0.10117
      93 → 95
                 0.66478
      93 → 100
                 0.10434
                       Singlet-A 5.8024 eV 213.68 nm
Excited State 9:
                                                           f=0.0199
      94 → 100
                 0.60595
      94 → 101
                 0.23865
      94 → 102
                 -0.11948
      94 → 103
                 0.12781
                       Singlet-A 5.8701 eV 211.21 nm
Excited State 10:
                                                          f=0.0252
      91 → 95
                 -0.12378
      92 → 95
                 0.11160
      92 → 96
                 -0.27994
                 -0.16477
      92 → 97
      92 → 98
                 -0.17985
      93 → 96
                 0.41906
      93 → 97
                 -0.15469
      93 → 98
                 -0.33356
Excited State 11:
                       Singlet-A 5.8905 eV 210.48 nm f=0.0095
              0.66262
0.10494
      91 → 95
      93 → 96
```


Fig. S1 (a) The visible-NIR ionizing pump spectrum ranges from 530 nm to 750 nm, with a center wavelength of 642 nm. **(b)** The broadband UV probe spectrum ranges from 290 nm to 360 nm.

Fig. S2 (a) A second-order interferometric auto-correlation trace of the visible-NIR ionizing pump spectrum, measured in a 10- μ m-thick, θ = 37.0 deg Type I BBO crystal, reveals a pulse duration with full-width half-maximum (FWHM) of 5.6 fs. **(b)** The visible-NIR pump – UV probe cross-correlation, measured *via* difference frequency mixing in a 10- μ m-thick, θ = 37.0 deg Type I BBO crystal, reveals a FWHM of 24 fs.

Fig. S3. (a) Spectrum of the pump beam reflected from the liquid water microjet target, revealing modulations due to spectral interferometry. (b) Normalized FFT spectrum of the spectral modulation, showing a time delay of ~107 fs between the front- and back reflections of the liquid microjet. Given the group index of 1.357 at 640-nm wavelength for liquid water, the thickness of the microjet is determined to be $12 \mu m$. From the ~10-fs width of the peak, the uncertainty in the thickness of the liquid microjet is estimated to be ~1 μm .

Fig. S4 (a) The wavelength-dependent offset values, $\Delta A_0(\lambda)$, obtained from the global fitting of photodetached aqueous phenylalaninate anion (in red) after taking the difference between the offset spectra of the aqueous phenylalaninate anion and aqueous sodium hydroxide. The residual vertical offset at long wavelength is most likely due to the absorption of the hydrated electron (in blue, dashed line). (b) Second-derivative spectrum of the molar extinction spectrum of the aqueous phenylalanine radical (Fig. 5b of the main text), showing the locations of the main peak and the vibronic bands. (c) A linear fit to the transition energies of the vibronic bands reveals a spacing of 482 ± 15 cm⁻¹ for the vibronic progression.

Fig. S5. The equilibrium geometry of **(a)** the phenylalanine radical and **(b)** the microhydrated phenylalanine radical, Phe(H₂O)₄•. The microhydrated species includes the carboxyl (–CO₂) and amino (–NH₂) groups of the phenylalanine radical each hydrogen-bonded to two water molecules. The carbon, hydrogen, oxygen and nitrogen atoms are in gray, white, red and blue, respectively.

Fig. S6 Classical trajectory calculations performed using the potential energy curve calculated for the isolated Phe• radical reveal a duration of 214 fs for the C1–C2 bond to extend from the Franck-Condon region (1.557 Å) to 5.00 Å.

Table S1. Experimental FFT power, time-domain analysis results, and calculated frequencies of the phenylalanine radical in aqueous solution and their assignments. The calculated frequencies are based on the equilibrium geometry of the microhydrated phenylalanine radical, Phe(H₂O)₁₀•. The numbered assignments denote the benzene ring modes in the Wilson notation^{1,2}.

		Experiment	al			
FFT Frea		Time-Don	nain Analysis		Calc. Freq.	Assignment
(cm ⁻¹)	Freq. (cm ⁻¹)	Amplitude (meV)	Dephasing Time (ps)	Phase (π-rad)	(cm ⁻¹)	
486	479 ± 2	0.98 ± 0.15	0.64 ± 0.12	0.88 ± 0.05	515	16b
750	736 ± 6	3.98 ± 1.12	0.17 ± 0.03	1.00 ± 0.08	759	11
776	805 ± 6	0.52 ± 0.29	0.50 ± 0.28	1.18 ± 0.18	770	NH ₂ wag
1003	1004 ± 1	4.23 ± 0.07	5.47 ± 0.73	1.76 ± 0.01	1015	12
1032	1031 ± 1	1.46 ± 0.08	2.83 ± 0.68	1.79 ± 0.02	1048	19a
1208	1208 ± 1	2.48 ± 0.13	0.98 ± 0.11	1.83 ± 0.02	1223	Chain CH2 wag
1282	1269 ± 5	0.54 ± 0.18	0.71 ± 0.41	1.95 ± 0.15	1298	1 (19a, 12, 7a, 20a, 8a, 12, 6a)*
1319	1329 ± 5	0.36 ± 0.16	0.87 ± 0.71	0.28 ± 0.16	1351	Chain CH ₂ wag / NH ₂ twist
1601	1604 ± 2	0.30 ± 0.07	2.09 ± 1.41	0.69 ± 0.07	1640	9a / NH2 wag
2005	1971 ± 22	1.61 ± 1.22	0.13 ± 0.07	0.58 ± 0.24	_	Overtone of 1003 cm^{-1}
1555	1555 ± 1	0.80 ± 0.05	7.37 ± 3.21	1.81 ± 0.01		Oxygen
2327	2329 ± 1	0.90 ± 0.06	15.38 ± 8.04	0.96 ± 0.01		Nitrogen

*Numbers in parentheses refers to minor contributions of phenyl vibrational modes to the main vibrational mode, in descending order of importance.

Table S2. Density functional theory (DFT)-calculated vibrational frequencies of the microhydrated 2-phenylethanamine and microhydrated phenylalanine radicals in an aqueous environment. The assignment of atoms and vibrational modes are based on the equilibrium geometries of the microhydrated phenylalanine radical, $Phe(H_2O)_{4^{\bullet}}$, as shown in Fig. S5b. The numbered assignments denote the benzene ring modes in the Wilson notation.^{1,2}

	Freque	ncy / cm ⁻¹	
	Microhydrated 2- phenylethanamine	Microhydrated Phenylalanine Radical [Phe(H2O)4•]	Assignment
1	59	67	CO ₂ rock / 2-phenylethanamine rock
2	124	94	CO ₂ twist
3	151	167	NH2 twist / CH2 twist / CH wag
4	220	344	CH ₂ rock
5	286	319	16b
6	355	368	NH2 twist / CH2 rock
7	339	344	CH ₂ Rock
8	415	415	16a
9	503	512	16b
10	604	610	Ring deformation
11	647	651	CO ₂ bend / NH ₂ twist
12	634	634	6b
13	757	755	NH ₂ wag
14	711	712	11
15	762	761	11
16	833	837	6a
17	857	859	10a
18	924	902	17b
19	927	939	10b
20	993	975	NH ₂ twist / 17b
21	987	993	17a
22	1006	1010	5
23	1015	1015	12

24	1046	1048	19a
25	1092	1105	19b
26	1151	1165	NH2 rock / CH2 twist
27	1173	1176	8b
28	1194	1199	14, 8b
29	1208	1234	NH2 twist / CH2 twist
30	1218	1221	CH ₂ wag
31	1243	1299	1 (19a, 12, 7a, 20a, 8a, 12, 6a)*
32	1335	1332	15
33	1345	1354	CH2 wag / NH2 twist
34	1355	1367	3
35	1438	1458	CH2 rock / CH rock
36	1474	1467	CH ₂ symmetric bend
37	1478	1482	18b
38	1522	1525	18a
39	1616	1619	9b
40	1636	1640	9a / NH2 wag
41	1669	1682	9a / NH ₂ wag
42	2908	3017	CH ₂ symmetric stretch
43	3002	3088	CH ₂ asymmetric stretch
44	3139	3139	CH stretch
45	3154	3157	13
46	3156	3164	7b
47	3167	3172	20a (7a, 2, 13)*
48	3174	3180	20b
49	3186	3189	2
50	3453	3357	NH ₂ symmetric stretch
51	3550	3468	NH ₂ asymmetric stretch

*Numbers in parentheses refers to minor contributions of phenyl vibrational modes to the main vibrational mode, in descending order of importance.

ph	enylalanine	radical, with diff	erent microhydr	ration configura	ations, all embed	lded in a polari	zable continuun	n (PCM). The assignment of atoms
anc	d vibrational	modes are based	on the equilibri	um geometries	of the phenylala	nine radical and	the microhydra	ted phenylalanine radical, as shown
in	Fig. S5 and]	Fig. 9b of the ma	in text. The nun	abered assignm	ents denote the l	oenzene ring m	odes in the Wils	on notation. ^{1,2}
			Calculated V	ibrational Free	quency (cm ⁻¹)			• • • • • • • • • • • • • • • • • • •
	Phe•	Phe(H ₂ O) ₃ •	Phe(H ₂ O) ₄ •	Phe(H ₂ O) _{6a} •	Phe(H ₂ O) _{6b} •	Phe(H ₂ O)9•	Phe(H ₂ O) ₁₀ •	Assignment
1	8	L	23	15	22	22	18	CO2 twist / Phenylalanine twist
2	15	44	24	53	42	47	63	CO ₂ twist / Benzene twist
ξ	22	49	67	25	15	57	15	CO ₂ rock / 2-phenylethanamine rock
4	31	24	32	36	31	32	28	Benzene twist
5	46	66	44	101	58	53	53	CO ₂ rock / 2-phenylethanamine rock
9	62	54	94	287	107	81	49	CO ₂ twist
٢	100	105	173	175	166	103	178	Benzene rock
×	111	94	167	67	105	171	103	NH2 twist / CH2 twist / CH wag
6	281	158	319	315	314	299	323	16b
10	326	263	139	187	158	205	652	NH2 rock
11	339	329	344	344	343	343	345	CH2 rock

Table S3. Density functional theory (DFT)-calculated vibrational frequencies of the isolated phenylalanine radical and the microhydrated

13

699 595 NH ₂ twist / CH ₂ rock	415 414 16a	515 515 16b	598 624 Ring deformation	598 611 Ring deformation	621 634 6b	658 691 CO ₂ bend / NH ₂ twist	684 682 CO ₂ scissor	784 770 NH ₂ wag	712 712 11	760 759 11	836 836 6a	858 858 10a	905 904 17b	940 940 10b	972 968 NH ₂ twist / Chain CC stretch / 17b	992 992 17a	1010 1010 5	1015 1015 12	1048 1048 1048 $19a$
440	415	511	453	575	580	658	670	727	635	670	837	859	899	936	969	992	1009	1015	1048
710	415	513	438	610	634	647	674	781	713	761	838	859	903	940	982	992	1009	1015	1048
368	415	512	444	610	634	651	668	755	712	761	837	859	902	939	975	993	1010	1015	1048
466	415	505	612	296	634	636	653	507	712	758	834	858	889	931	954	992	1009	1015	1048
351	415	505	594	617	634	637	658	687	712	762	833	857	922	929	974	988	1005	1015	1047
12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	21

1113 19b	1155 NH2 rock / CH2 twist	1176 8b	1199 14, 8b	1231 NH2 twist / CH2 twist	1223 CH2 wag	1298 1 (19a, 12, 7a, 20a, 8a, 12, 6a)*	1330 15	1351 CH2 wag / NH2 twist	1366 3	1276 CO ₂ symmetric stretch	1448 CH2 rock / CH rock	1468 CH ₂ symmetric bend	1482 18b	1525 18a	1620 9b	1640 9a / NH2 wag	1712 9a / NH2 wag	1850 CO ₂ asymmetric stretch	3026 CH ₂ symmetric stretch
1115	1158	1177	1200	1230	1221	1299	1330	1350	1365	1278	1447	1467	1482	1525	1620	1640	1715	1847	3026
1100	1156	1176	1198	1230	1222	1298	1331	1352	1365	1261	1458	1466	1483	1525	1620	1640	1701	1920	3013
1107	1078	1177	1199	1236	1221	1299	1332	1354	1367	1273	1456	1468	1482	1525	1619	1640	1698	1884	3020
1105	1165	1176	1199	1234	1221	1299	1332	1354	1367	1267	1458	1467	1482	1525	1619	1640	1682	1897	3017
1097	1147	1176	1200	1224	1221	1294	1330	1351	1365	1254	1457	1464	1483	1525	1620	1640	1650	1960	3007
1092	1147	1174	1195	1203	1216	1230	1334	1343	1356	1371	1432	1473	1478	1523	1617	1637	1638	2381	2920
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51

52	3000	3072	3088	3089	3080	3089	3090	CH2 asymmetric stretch
53	3154	3160	3139	3134	3147	3136	3137	CH stretch
54	3155	3158	3157	3157	3157	3157	3157	13
55	3157	3164	3164	3164	3164	3164	3164	7b
56	3167	3172	3172	3172	3172	3172	3173	20a (7a, 2, 13)*
57	3175	3180	3180	3179	3179	3180	3180	20b
58	3187	3190	3189	3189	3190	3190	3190	2
59	3523	3556	3357	3280	3408	3260	3267	NH2 symmetric stretch
60	3622	3668	3468	3380	3516	3404	3449	NH2 symmetric stretch
*Nr	umbers in pare	ntheses refers to	minor contribu	utions of pheny.	l vibrational mo	des to the main	vibrational mode	in descending order of importance

References

- 1. E. B. Wilson, *Phys. Rev.*, 1934, **45**, 706-714.
- 2. A. M. Gardner and T. G. Wright, J. Chem. Phys., 2011, 135, 114305.