Excited-State Absorption of DNA bases in the gas phase and in chloroform solution: a comparative quantum mechanical study. Supplementary Information

Daniil A. Fedotov, Alexander C. Paul, Henrik Koch, Fabrizio Santoro, Sonia Coriani and Roberto Improta

February 2, 2022

S1 Results

\mathbf{IPs}

Table S1: First ionization energy of the four nucleobases (FC geometries) in gas phase.

	CCSD [eV]	CC3 [eV]	CAM-B3LYP
Adenine	8.257	8.236	8.38
Cytosine	8.683	8.616	8.82
Guanine	7.858	7.799	7.97
Thymine	9.045	8.930	9.44

SS1.1 ESA summary

Table S2: Summary of energy region and number of excited states (in parenthesis) computed with various methods for a particular target state of all four nucleobases.

1	0			
	State	EOM-CC3	EOM-CCSD	CAM-B3LYP
Thymine	1π	4.08(50)	4.15(50)	4.13(43)
	1n	4.30(51)	4.40(51)	4.25(45)
Cytosine	1π	3.95(44)	4.3(51)	4.05(43)
	1n	3.51(43)	3.8(50)	3.74(43)
Adenine	L_a	1.69(17)	2.71(39)	3.02(43)
	L_b	1.79(19)	2.84(39)	2.96(42)
	1n	1.75(18)	2.73(39)	3.10(43)
Guanine	L_a	1.7(14)	2.56(28)	3.17(43)
	L_b	1.2(12)	2.02(25)	2.73(41)
	1n	1.1(11)	2.03(26)	2.71(42)

Molecule	Method	Sym	Energy Sta	f×100	Character	MO/NTO	Weight
Thymine	CAM-B3LYP	1A''	5.13	0.00	$1 \mathrm{n}/\mathrm{n}\pi^*$	the the	1.00
		1A'	5.25	17.5	$1\pi/\pi\pi^*$	See See	0.97
	CCSD	1A''	5.26 (5.01)	0.00	$1n/n\pi^*$	the the	0.80
		1A'	5.51 (5.28)	20.7 (15.9)	$1\pi/\pi\pi^*$	See the	0.76
Cytosine	CAM-B3LYP	1A'	4.98	6.56	$1\pi/\pi\pi^*$	1	0.96
		1A''	5.29	0.19	$1n/n\pi^*$	10	1.0
		3A''	5.92	0.01	$2n/n\pi^*$	1. X.	0.94
	CCSD	1A'	4.99 (4.76)	6.57 (5.09)	$1\pi/\pi\pi^*$	10 X X	0.74
		1A''	5.46 (5.20)	0.26 (0.21)	$1n/n\pi^*$	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0.8
		6A''	6.34	0.00	$\mathrm{n/n}\pi^*$	an an	0.7
Adenine	CAM-B3LYP	1A'	5.34	27.7	$L_a/\pi\pi^*$	30 40	0.95
		1A''	5.35	0.06	$1n/n\pi^*$	20. 00	0.98
		2A'	5.49	1.32	$L_b/\pi\pi^*$	30 300	0.72
						in in	0.27
	CCSD	1A'	5.41 (5.24)	0.56 (0.55)	$L_b/\pi\pi^*$	\$ th	0.49
						in in	0.28
		1A''	5.51 (5.28)	0.18 (0.11)	$1 n/n \pi^*$	1	0.78
		2A'	5.53 (5.31)	29.7 (26.31)	$L_a/\pi\pi^*$	30 40	0.73
Guanine	CAM-B3LYP	1A'	5.13	14.8	$L_a/\pi\pi^*$	to the	0.95
		2A'	5.57	33.7	$L_b/\pi\pi^*$.x	0.96
		3A''	5.59	0.00	$n\pi^*$	the stop	1.0
	CCSD	1A'	5.21 (5.03)	1 6.6 (13.43)	$L_a/\pi\pi^*$	the the	0.73
		2A'	5.751 (5.51)	34.8 (30.42)	$L_b/\pi\pi^*$	to to	0.76
		3A'' (1A'')	5.750 (5.61)	0.00	$n\pi^*$	an an	0.82

Figure S1: Excited states considered for each molecule in gas phase and their characterization via Natural Transition Orbitals. Energies in eV. The EOM-CC3 data is shown in parenthesis beside the corresponding EOM-CCSD values.

Figure S2: Thymine. Comparison of our results with RASPT2 (in thick black) from Ref. [1]. The top panels refer to OPA and the middle and bottom panels to ESA (notice the excited state labels).

Figure S3: Cytosine. Comparison of our results with RASPT2 (in thick black) from Ref. [1]. The top panels refer to OPA and the middle and bottom panels to ESA (notice the excited state labels).

Figure S4: Adenine. Comparison of our results with RASPT2 (in thick black) from Ref. [1]. The top panels refer to OPA and the middle and bottom panels to ESA (notice the excited state labels).

Figure S5: Guanine. Comparison of our results with RASPT2 (in thick black) from Ref. [1]. The top panels refer to OPA and the middle and bottom panels to ESA (notice the excited state labels).

SS1.3 One-photon Absorption: Comparison with Experiment

Computed OPA spectra for the four nucleobases are compared with available experimental results in Figures S6–S9. Computed spectra have been red-shifted by an amount specified by the inset in the Figures so to approximately overlap the lowest-energy computed and experimental bands; their shape nicely compare with the low-energy part of the experimental spectra. Data in the figures clearly suggest that the employed levels of electronic structure theory overestimate the excitation energies of the bright states, EOM-CC3 generally being the most accurate. However, it is not possible to precisely define the error of the electronic calculations. In fact, the experimental spectrum of adenine was measured at \sim 500 K, and the one adopted to compare with thymine was actually measured for 1-methyl-thymine at 370 K. Spectra for cytosine and guanine were obtained at lower temperatures, but in any case it is known that they arise from a contribution of a mixture of different tautomers [2, 3]. On the contrary, the computed spectra were obtained considering a single tautomer for each nucleobase at 0 K, neglecting both vibronic and non-adiabatic effects, and simply broadening the stick electronic intensities with a phenomenological Lorentzian. For instance, it is well known that vibronic effects usually induce a red-shift by 0.1–0.2 eV of the spectral maximum at room temperature, and analytical expressions of the first spectral moment suggest that larger red-shifts should occur at larger temperatures [4].

Figure S6: Thymine. Comparison of our results for OPA with experimental spectrum for 1-methyl-thymine in vapor phase at 370K taken from Ref. [5].

Figure S7: Cytosine. Comparison of our results for OPA with the experimental spectrum measured in an Argon matrix at low-temperature taken from Ref. [2].

Figure S8: Adenine. Comparison of our results for OPA with the experimental spectrum in vapor phase at 500K taken from Ref. [5].

Figure S9: Guanine. Comparison of our results for OPA with the experimental spectrum in nitrogen matrix at 15 K taken from Ref. [3].

SS1.4 PCM/OPA at gas-phase versus PCM optimized ground-state geometry

Figure S10: PCM/TD-CAMB3LYP OPA using gas-phase and PCM optimized geometries for the ground state.

SS1.5 Experimental transition absorption spectra

Figure S11: Thymine. TEA spectra recorded in chloroform after 260 nm excitation for 3',5'-Di-O-(tert-butyldimethylsilyl)-2'-deoxythymidine, reproduced with permission from *Is UV-Induced Electron-Driven Proton Transfer Active in a Chemically Modified A*·*T DNA Base Pair*?, J. Phys. Chem. B 2017, 121, 4448-4455 [6], main text.

Figure S12: Cytosine and Guanine. Transient absorption maps after 260 nm excitation of (a) 2',3',5'-Tri-O-(tert-butyldimethylsilyl)-guanosine and (b) 3',5'-Di-O-(tert-butyldimethylsilyl)-2'deoxycytidine, measured separately and scaled according to their actinometric factors to a concentration c = 5.6 mM. Both absorption maps are shown on the same intensity scale. Reproduced with permission from Ultraviolet Absorption Induces Hydrogen-Atom Transfer in G·C Watson-Crick DNA Base Pairs in Solution, Angew. Chem. Int. Ed., 54(49), 14719-14722, 2015 (see ESI file) [7].

Figure S13: Adenine. TEAS measurements after 260 nm excitation of the 8-tert-butyl-9ethyladenine in CHCl₃ ($c_0 = 50$ mM). Reproduced with permission from: Is UV-Induced Electron-Driven Proton Transfer Active in a Chemically Modified A·T DNA Base Pair?, J. Phys. Chem. B 2017, 121, 4448-4455 (SI) [6]. Please notice that CHCl₃ also absorbs in that region (see SI in the same paper).

SS1.6 Cartesian coordinates

#Thvmine.	ground	state	opt	Cs	svm	cam-1	o31vp/6-311+G(d.p)
0 1	0				j		jr, (-,r,
7	0.1	55116	-1.	6588	319	0.00	00000
6	1.3	55869	-0.	9786	582	0.00	00000
7	1.1	96269	0.	3907	701	0.00	00000
6	-0.0	00000	1.	1149	923	0.00	00000
6	-1.2	14111	0.	2964	ł15	0.00	00000
6	-1.0	73416	-1.	0369	928	0.00	00000
8	2.4	30202	-1.	5317	746	0.00	00000
8	0.0	18245	2.	3260)17	0.00	00000
1	0.2	30151	-2.	6639	902	0.00	00000
1	2.04	49617	0.	9342	284	0.00	00000
6	-2.5	32996	1.	0007	762	0.00	00000
1	-1.9	25568	-1.	7047	714	0.00	00000
1	-3.3	57798	0.	2872	281	0.00	00000
1	-2.6	27877	1.	6453	382	0.8	75945
1	-2.6	27877	1.	6453	382	-0.87	75945
#Cutosing	ground	d state	a ont	. r.		c am-	-h31vn/6-311+C(d n)
∩ 1	, ground	a state	e opt	. 02	s Sym	Calli	borypy o orrada,py
6	-0 0665	18 -	1 71/	507	-0	0000	00
6	-1 2100	10 . 07 (1.713 7.731	513	0	.00000	
6	1 1015	17 () 340	603	-0	.00000	
6	1 1310	10 - 2	1 007	1035	-0	.00000	
7	-1 2036	. 00 	1 025	121	0	.00000	
7	-0.0000		1 047	7554	0		
7	0.0000	70 ·	1 041	204	_0	.00000	
0	-2.2710	10 . 17 (001	-0		
0	-2.2907	11 (24 -).994 1 /03	2553	0		
1	2.1124	24 . 60 - ⁻	1 653	675	-0	.00000	
1	-0 1766	30 _	701	533	-0	.00000	
1	3 1505	50 (2000	-0	.00000	
1	0.1090	10 (0.001	.234	-0	.00000	
T	2.2000	10 2	2.020	009	-0	.00000	00
#Adenine,	ground	state	opt	Cs	sym	cam-1	o3lyp/6-311+G(d,p)
0 1	0		-		Ū		
6		0.6645	555	-2	0218	21	0.00000
7		1.6590	800	-1.	1277	92	0.00000
6		1.3538	386	0.	1712	90	0.00000
6		0.000	000	0.	5432	82	0.00000
6		-0.9187	721	-0.	4954	94	0.000000
7		-0.641	588	-1.	7988	63	0.000000
1		0.973	540	-3.	0619	95	0.000000
7		2.3482	282	1.	0808	32	0.000000
1		3.3016	358	0	7613	62	0.00000

1	2.137417	2.063682	0.000000	
7	-0.633203	1.770424	0.000000	
7	-2.142670	0.123487	0.000000	
6	-1.899333	1.476588	0.000000	
1	-3.038351	-0.337796	0.000000	
1	-2.705393	2.195054	0.00000	

#Guanine	CAM-B3LYP	in	gas	ground	sta	te	opt	Cs	sym
0 1									
Ν		-2	. 1645	54700	0.	729	3740	0	0.00000000
С		-1	.8236	6900	2.	066	52100	0	0.00000000
Ν		-0	.5409	93100	2.	253	88570	0	0.0000000
С		0	.0000	00000	0.	987	6210	0	0.0000000
С		1.	. 3685	57000	0.	557	9660	0	0.0000000
0		2	.4004	11600	1.	186	51250	0	0.0000000
Ν		1.	.4243	15700	-0.	869	6810	0	0.0000000
С		0	.3566	58200	-1.	723	80020	0	0.00000000
Ν		0	.6275	52800	-3.	053	31720	0	0.0000000
Ν		-0	.8820	07600	-1.	320	7990	0	0.0000000
C		-0	.996:	16000	0.	028	30790	0	0.0000000
Н		-2	.573:	19600	2.	842	26490	0	0.0000000
Н		2	.3675	55200	-1.	232	27400	0	0.0000000
Н		1	.5617	78000	-3.	418	86130	0	0.0000000
Н		-0	. 1520	00300	-3.	687	3340	0	0.0000000
Н		-3	.0889	91000	0.	328	37410	0	0.0000000

#thymine ground-state opt cam-b3lyp/6-311+G(d,p) (pcm,solvent=chloroform)
0 1

7	0.155861	-1.656905	0.00000
6	1.348122	-0.978122	0.000000
7	1.193813	0.389891	0.000000
6	-0.000000	1.111096	0.000000
6	-1.211715	0.299008	0.000000
6	-1.070916	-1.036322	0.000000
8	2.431872	-1.527412	0.000000
8	0.024973	2.328337	0.000000
1	0.219125	-2.664176	0.000000
1	2.049189	0.931542	0.000000
6	-2.535469	0.996251	0.000000
1	-1.920442	-1.706492	0.000000
1	-3.353100	0.275165	0.000000
1	-2.638688	1.637095	0.878043
1	-2.638688	1.637095	-0.878043

#Cytosine	ground-state	opt	cam-b3lyp/6-311+G(d,p)	(pcm,solvent=chloroform)
0 1				

6	-0.07823	8 -1.711082	0.000000
6	-1.21069	1 0.429367	0.00000
6	1.10991	7 0.332531	-0.000000
6	1.12424	6 -1.101646	-0.000000
7	-1.21227	9 -0.972910	0.000000
7	0.00000	0 1.046281	0.000000
7	2.27730	9 1.000355	-0.000000
8	-2.284814	4 1.015877	0.000000
1	-2.11911	8 -1.416904	0.000000
1	2.04573	4 -1.663820	-0.000000
1	-0.19921	9 -2.786045	0.000000
1	3.16097	1 0.521282	-0.000000
1	2.26353	7 2.007372	-0.000000
#Adenine ground-state opt 0 1	cam-b3lyp/6	-311+G(d,p) (j	ocm,solvent=chloroform)
6	0.667236	-2.022050	0.000000
7	1.660884	-1.127134	0.000000
6	1.356343	0.176061	0.000000
6	-0.000000	0.544006	0.000000
6	-0.920311	-0.494227	0.000000
7	-0.638823	-1.800140	0.000000
1	0.977071	-3.062083	0.000000
7	2.349455	1.082195	0.000000
1	3.306220	0.769954	0.000000
1	2.144312	2.066945	0.000000
7	-0.636766	1.769518	0.000000
7	-2.142902	0.121699	0.000000
6	-1.905190	1.471307	0.00000
1	-3.043690	-0.333133	0.00000
1	-2.715312	2.184771	0.000000
#Guanine ground-state opt 0 1	cam-b3lyp/6-3	311+G(d,p) (po	cm,solvent=chloroform)
7	2.165508	0.731179	0.00000
6	1.825250	2.064017	0.00000
7	0.539098	2.251115	0.00000
6	-0.00000	0.980487	0.00000
6	-1.360687	0.546722	0.00000
8	-2.391516	1.196786	0.00000
7	-1.427933	-0.865854	-0.00000

-1.726001

-3.046651

-1.320604

0.024156

-0.000000

-0.000000

-0.000000

0.000000

-0.362075

-0.637636

0.882261

1.001166

6

7

7

6

S17

	1 1 1 1	2.576099 -2.369422 -1.575599 0.133343 3.096696	2.839064 -1.236510 -3.407522 -3.692663 0.342769	0.000000 -0.000000 -0.000000 -0.000000 0.000000
Planar pi-pi*	(pseudo) min	lima		
Adenine	0 007400	1 700070	0 00000	
N N	-0.697490	-1./090/8	0.000000	
IN N	1.009399	-1.100025	0.000000	
IN N	2.351100	1.003074	0.000000	
N	-0.307239	0 162960	0.000000	
C	2.109000	-2 051103	0.000000	
C	-1 902479	1 516037	0.000000	
C	1 380496	0 129048	0.000000	
C	-0.000000	0.562268	0.000000	
C	-0.950417	-0.500774	0.000000	
H	0.944736	-3.099893	0.000000	
Н	-3.074357	-0.277988	0.000000	
Н	-2.672239	2.268913	0.000000	
Н	3.319578	0.782075	0.000000	
Н	2.099160	2.040225	0.00000	
Contraciona				
Cytosine	1 061501	0 046704	0 00000	
N N	-1.201581	-0.946724	-0.000000	
N N	0.000000	1.057440	0.000000	
N C	-0 1/6083	-1 757020	-0.000000	
C	-1 1//101	0 131935	-0.000000	
C	1 150818	0.431933	0.000000	
C	1 105110	-1 102763	0.000000	
n	-2 261029	1 039129	-0.000000	
н	-2.201023	-1.312637	-0.000000	
H	2.008875	-1.697630	0.000000	
H	-0.285426	-2.824776	-0.000000	
Н	3.214111	0.593980	0.000000	
Н	2.214005	2.013915	0.000000	
Thymine				
N	0.123521	-1.656065	0.000000	
N	1.230515	0.393695	0.000000	
C C	-2.495838	1.014589	0.000000	
C C	1.336531	-0.961/13	0.000000	
C C	0.000000	1.125/46	0.000000	
C C	-1.18/662	0.335086	0.000000	
C	-1.122795	-1.103864	0.000000	

0	2.382223	-1.582508	0.000000
0	0.052431	2.358156	0.000000
Н	0.248475	-2.660995	0.000000
Н	2.086585	0.929853	0.000000
Н	-1.978781	-1.758536	0.000000
Н	-3.324893	0.306774	0.000000
Н	-2.584144	1.677620	0.869282
Н	-2.584144	1.677620	-0.869282
Guanine			
N	-1 504040	-0 849086	0 00000
N	0 556158	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.000000
N	0.000100	2.220279	0.000000
IN N	_0 670929		0.000000
IN N	-0.070626	1 216090	0.000000
N G	0.883191	-1.316980	0.000000
C	1.851/00	2.030473	0.000000
C	-0.418679	-1.716037	0.000000
C	1.052850	-0.033805	0.000000
C	-0.00000	0.986680	0.000000
C	-1.360861	0.580539	0.000000
0	-2.377676	1.251963	0.000000
Н	2.583330	2.825465	0.000000
Н	-2.454747	′ –1.183812	0.000000
Н	-1.602011	-3.428506	0.000000
Н	0.112342	2 -3.683515	0.000000
Н	3.167967	0.346265	0.000000
Non-planar	pi-pi* minima	(true absolu	te minima)
Cyt			
N	-1.310699	0.834832	-0.231937
N	0.090817	-1.043719	0.211651
N	2.383591	-0.807160	-0.152892
С	-1.124346	-0.547209	0.052548
С	-0.318735	1.718012	0.056533
С	1.157692	-0.199170	0.016515
С	0.992431	1.181690	0.061997
0	-2.172580	-1.194973	0.148854
н	-2.271685	1,128587	-0.319936
н	1 840089	1 849008	0 119361
ч	-0 555979	2 760468	0.170795
11 U	2 105/05	-0.252072	0.172795
n u	2 420075	-0.255072	0.000999
п	2.429075	-1.740901	0.209401
Ade			
N	0.009749	-0.025352	0.024966
N	-0.706910	0.135680	3.632378
N	2.135018	0.021967	0.743346

N	1.665997	0.155249	3.116799
N	-2.315182	-0.071336	1.963855
С	0.561341	0.089513	3.990673
С	-1.033513	0.071449	2.345281
С	0.018916	-0.060082	1.351304
С	1.342976	-0.006738	1.871682
С	1.307119	-0.006795	-0.346393
Н	3.140435	0.049261	0.730127
Н	1.668081	-0.068104	-1.356762
Н	0.795494	0.091290	5.043260
Н	-3.047044	-0.116762	2.653226
Н	-2.544237	-0.166080	0.989005
	20011201	0.100000	
Gua			
N	1.519395	0.646576 (0.560140
N	0.536361 -	1.483818 (0.054940
Ν	-2.090886	0.843536 -0).192269
N	-1.894114 -	1.374044 (0.104300
N	2.789727 -	1.098671 -0	0.389088
C	-0.604792 -	0.866258 ().194007
C	-0.780109	0.558797 (0.001775
C	0.364004	1.398553 (0.060758
C	1.592693 -	0.628274 (0.010983
C	-2.711480 -	0.320792 -() 118879
0 0	0 492054	2 590759 -() 194554
н	2 354564	1 200833 () 424976
н	3 640341 -	0 667801 -(064182
ч	2.841251 - 4	0.007001	646684
и и	-3 777360	0 444265 -(216567
и и	-2 180506 -	0.444200	200860
11	2.100500	2.002070	0.200009
Thy			
N	-0.334220	1.300743	-0.635740
N	0.914074	-0.613781	-0.209139
C	2.047554	0.109194	-0.068124
C	-0.327999	-0.064115	-0.514437
C	0.620234	2.124717	0.028830
C	1.858153	1,490160	0.321425
C	2.902194	2.173131	1.100966
0 0	-1.294809	-0.777279	-0.694571
0	0.296182	3.282989	0.315494
н	0.929933	-1.626264	-0.203617
н	-1.248432	1.713393	-0.748326
н	2 994316	-0.402702	-0.074978
н	3 096916	1.649929	2.045133
н	3 25/1/6	2.0 2 0020 2.157500	0 557567
11	0.004140	2.101022	0.001001

2.617205 3.198230 1.315253

S2 Basis set comparison

Figure S14: Thymine. Comparison of CAMB3LYP OPA using two different basis sets: aug-cc-pVDZ and $6\text{-}31\mathrm{G}^*.$

Figure S15: Thymine. CAMB3LYP ESA of S_2 (left) and S_1 (right) computed using the aug-cc-pVDZ and 6-31G^{*} basis sets.

Figure S16: Cytosine. Comparison of OPA computed at CAMB3LYP/aug-cc-pVDZ and CAMB3LYP/6-31G* levels of theory.

Figure S17: Cytosine. Comparison of ESA computed at CAMB3LYP/aug-cc-pVDZ and CAMB3LYP/6-31G* levels of theory.

Figure S18: A denine. Comparison of CAMB3LYP OPA using the aug-cc-pVDZ and $6\text{-}31\mathrm{G}^*$ basis sets.

Figure S19: A denine. Comparison of CAMB3LYP ESA using the aug-cc-pVDZ and $6\text{-}31\mathrm{G}^*$ basis sets.

Figure S20: Guanine. Comparison of OPA computed at CAM-B3LYP/aug-cc-pVDZ and CAM-B3LYP/6-31G* levels of theory.

Figure S21: Guanine. Comparison of CAM-B3LYP ESA computed using the aug-cc-pVDZ and CAM-B3LYP/ $6-31G^*$ basis sets.

S3 Tamm-Dancoff (TDA) results: ESA from quadratic response versus ESA from maximum-overlap-method

Figure S22: Thymine. Comparison of TDA and TDDFT results using the CAMB3LYP functional for OPA, as well as TDA ESA from quadratic response theory and OPA of MOM-optimized excited states. [8]

	1n		1π
ω_j	$f \times 100$	ω_j	$f \times 100$
0.31	0.00	0.78	0.00
1.42	0.00	1.31	0.31
2.28	0.84	1.57	0.28
2.40	0.20	1.90	2.66
2.57	1.59	2.06	0.11
2.83	0.03	2.25	0.16
3.10	0.02	2.28	0.00
3.48	0.12	2.61	1.21
3.66	0.24	2.99	0.09
3.93	0.06	3.09	0.01
4.06	0.00	3.43	0.02
4.16	0.01	3.46	0.14
4.20	0.01	3.64	7.81
4.27	1.17	3.76	11.4
4.37	0.00	4.01	0.11
4.44	2.81	4.07	0.16
4.58	0.42	4.21	0.00
4.67	3.31	4.28	0.14
4.77	0.14	4.46	0.01

Table S3: Thymine. MOM-TDA/CAM-B3LYP ESA results.

S4 TABLES OF RAW DATA

SS4.1 Thymine

Table S4: Thymine. CAM-B3LYP/aug-cc-pVDZ OPA excitation energies $(\Delta E, eV)$ and oscillator strengths (f) computed with the Tamm-Dancoff approximation (CIS), at TDDFT level in gas phase and at TDDFT in non-equilibrium PCM (chloroform). First IP is 9.44 eV.

				One-l	Photon A	n Absorption $(S_0 \rightarrow S_n)$					
TDA	. (Turbo	omole)	TDDF	T (Tur	bomole)	TDD	FT (Dal	ton)	TDDFT	PCM (1	Dalton)
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$
$0 \rightarrow 1$	5.15	0.00	$0 \rightarrow 1$	5.13	0.00	$0 \rightarrow 1A$ "	5.13	0.00	$0 \rightarrow 1A'$	5.16	24.47
$0 \rightarrow 2$	5.48	21.48	$0 \rightarrow 2$	5.25	17.48	$0 \rightarrow 1A'$	5.25	17.47	$0 \rightarrow 1$ A"	5.36	0.00
$0 \rightarrow 3$	5.79	0.06	$0 \rightarrow 3$	5.78	0.04	$0 \rightarrow 2A$ "	5.78	0.04	$0 \rightarrow 2A$ "	6.03	0.10
$0 \rightarrow 4$	6.45	0.00	$0 \rightarrow 4$	6.44	0.00	$0 \rightarrow 3A$ "	6.43	0.00	$0 \rightarrow 2A'$	6.48	26.21
$0 \rightarrow 5$	6.56	0.06	$0 \rightarrow 5$	6.55	0.04	$0 \rightarrow 4A$ "	6.55	0.04	$0 \rightarrow 3A$ "	6.62	0.01
$0 \rightarrow 6$	6.72	0.01	$0 \rightarrow 6$	6.63	4.28	$0 \rightarrow 2A'$	6.63	4.27	$0 \rightarrow 4$ A"	6.64	0.01
$0 \rightarrow 7$	6.76	13.44	$0 \rightarrow 7$	6.66	19.72	$0 \rightarrow 3A'$	6.66	19.73	$0 \rightarrow 3A'$	6.77	11.86
$0 \rightarrow 8$	6.80	14.11	$0 \rightarrow 8$	6.72	0.01	$0 \rightarrow 5A$ "	6.70	0.01	$0 \rightarrow 5A$ "	6.79	0.03
$0 \rightarrow 9$	7.14	0.08	$0 \rightarrow 9$	7.13	0.98	$0 \rightarrow 4(A')$	7.12	0.98	$0 \rightarrow 4(A')$	7.14	0.49
$0 \rightarrow 10$	7.14	1.85	$0 \rightarrow 10$	7.13	0.09	0→6À" ́	7.13	0.09	$0 \rightarrow 5 A'$	7.32	2.31
$0 \rightarrow 11$	7.17	2.00	$0 \rightarrow 11$	7.16	1.43	$0 \rightarrow 5A'$	7.15	1.42	$0 \rightarrow 6A$ "	7.33	0.13
$0 \rightarrow 12$	7.44	0.01	$0 \rightarrow 12$	7.44	0.01	$0 \rightarrow 7$ A"	7.43	0.01	$0 \rightarrow 7$ A"	7.49	0.08
$0 \rightarrow 13$	7.45	0.10	$0 \rightarrow 13$	7.45	0.09	$0 \rightarrow 8A$ "	7.45	0.19	$0 \rightarrow 8$ A"	7.55	0.06
$0 \rightarrow 14$	7.48	0.31	$0 \rightarrow 14$	7.48	0.31	$0 \rightarrow 9A$ "	7.46	0.26	$0 \rightarrow 9(A")$	7.57	2.27
$0 \rightarrow 15$	7.52	6.57	$0 \rightarrow 15$	7.51	5.27	$0 \rightarrow 6A'$	7.50	5.22	0→10A"	7.61	0.00
$0 \rightarrow 16$	7.60	1.61	$0 \rightarrow 16$	7.59	1.48	$0 \rightarrow 10 \text{A}$ "	7.58	1.39	$0 \rightarrow 6A'$	7.70	22.97
$0 \rightarrow 17$	7.72	5.08	$0 \rightarrow 17$	7.70	12.04	$0 \rightarrow 7A'$	7.69	10.39	$0 \rightarrow 7A'$	7.75	19.23
$0 \rightarrow 18$	7.89	13.50	$0 \rightarrow 18$	7.81	15.66	$0 \rightarrow 8A'$	7.80	16.16	$0 \rightarrow 11 \text{A"}$	7.85	0.50
$0 \rightarrow 19$	7.92	0.52	$0 \rightarrow 19$	7.92	0.48	$0 \rightarrow 11 \text{A}$ "	7.90	0.49	$0 \rightarrow 8A'$	7.92	13.44
$0 \rightarrow 20$	8.00	12.44	$0 \rightarrow 20$	7.99	10.34	$0 \rightarrow 9A'$	7.97	10.96	$0 \rightarrow 9A'$	8.10	5.08
$0\rightarrow 21$	8.01	0.27	$0 \rightarrow 21$	8.01	0.25	$0 \rightarrow 12 \text{A}$ "	8.00	0.23	$0 \rightarrow 10 \text{A}'$	8.24	1.25
$0\rightarrow 22$	8.13	27.90	$0 \rightarrow 22$	8.06	8.71	$0 \rightarrow 10 \text{A}'$	8.05	9.08	$0 \rightarrow 11 \text{A}'$	8.33	0.72
$0 \rightarrow 23$	8.22	0.04	$0 \rightarrow 23$	8.22	0.03	$0 \rightarrow 13$ A"	8.22	0.03	$0 \rightarrow 12 \text{A}$ "	8.36	0.21
$0 \rightarrow 24$	8.24	0.18	$0 \rightarrow 24$	8.23	0.47	$0 \rightarrow 11A'$	8.22	0.44	$0 \rightarrow 13$ A"	8.39	0.03
$0\rightarrow 25$	8.35	11.37	$0 \rightarrow 25$	8.32	6.83	$0 \rightarrow 12A'$	8.31	6.87	$0 \rightarrow 14$ A"	8.44	0.13
$0\rightarrow 26$	8.35	0.05	$0 \rightarrow 26$	8.35	0.05	$0 \rightarrow 14$ A"	8.34	0.05	$0 \rightarrow 15 \text{A}$ "	8.57	0.33
$0\rightarrow 27$	8.48	1.37	$0 \rightarrow 27$	8.47	0.10	$0 \rightarrow 13A'$	8.46	0.09	$0 \rightarrow 12A'$	8.59	12.69
$0 \rightarrow 28$	8.55	0.01	$0 \rightarrow 28$	8.55	0.01	$0 \rightarrow 15 A''$	8.53	0.00	$0 \rightarrow 16 A''$	8.60	0.04
$0\rightarrow 29$	8.60	0.04	$0 \rightarrow 29$	8.60	0.04	$0 \rightarrow 16 A''$	8.54	0.03	$0 \rightarrow 13 A'$	8.64	4.52
$0 \rightarrow 30$	8.68	0.99	$0 \rightarrow 30$	8.66	2.76	$0 \rightarrow 14A'$	8.65	0.34	$0 \rightarrow 17 \text{A}^{"}$	8.75	0.17
$0 \rightarrow 31$	8.74	0.35	$0 \rightarrow 31$	8.68	7.41	$0 \rightarrow 15 A'$	8.67	9.81	$0 \rightarrow 14 A'$	8.79	0.10
$0 \rightarrow 32$	8.75	0.68	$0 \rightarrow 32$	8.73	0.13	$0 \rightarrow 17 \text{A}^{"}$	8.72	0.44	$0 \rightarrow 18 \text{A}^{"}$	8.80	0.07
$0 \rightarrow 33$	8.77	0.24	$0 \rightarrow 33$	8.74	0.34	$0 \rightarrow 16 A'$	8.72	0.13	$0 \rightarrow 19 \text{A}^{"}$	8.83	0.00
$0 \rightarrow 34$	8.79	0.04	$0 \rightarrow 34$	8.77	0.23	$0 \rightarrow 18 \text{A}^{"}$	8.76	0.16	$0 \rightarrow 15 A'$	8.85	0.09
$0\rightarrow 35$	8.80	10.76	$0 \rightarrow 35$	8.78	0.04	$0 \rightarrow 19A''$	8.78	0.05	$0 \rightarrow 16 A'$	8.91	1.18
$0 \rightarrow 36$	8.83	0.04	$0 \rightarrow 36$	8.83	0.03	$0 \rightarrow 20 A''$	8.82	0.04	$0 \rightarrow 20 A''$	8.96	0.06
$0\rightarrow 37$	8.89	1.18	$0 \rightarrow 37$	8.89	0.50	$0 \rightarrow 17 \text{A}'$	8.88	0.50	$0 \rightarrow 21 A''$	9.00	0.03
$0\rightarrow 38$	8.93	0.09	$0 \rightarrow 38$	8.93	0.08	$0 \rightarrow 21 A''$	8.92	0.09	$0 \rightarrow 17 \text{A}'$	9.07	0.86
$0 \rightarrow 39$	8.99	0.09	$0 \rightarrow 39$	8.98	0.07	$0 \rightarrow 22A''$	8.98	0.07	$0 \rightarrow 22 A''$	9.09	0.00
$0 \rightarrow 40$	9.03	0.99	$0 \rightarrow 40$	9.02	0.99	$0 \rightarrow 18A'$	9.01	0.93	$0 \rightarrow 23 A''$	9.21	0.15
$0 \rightarrow 41$	9.15	0.17	$0 \rightarrow 41$	9.14	0.17	$0 \rightarrow 23 A''$	9.13	0.14	$0 \rightarrow 18A'$	9.24	0.81
$0 \rightarrow 42$	9.16	0.25	$0 \rightarrow 42$	9.15	0.24	$0 \rightarrow 191 \text{A}'$	9.14	0.26	$0 \rightarrow 24 A''$	9.29	0.24
$0 \rightarrow 43$	9.21	0.19	$0 \rightarrow 43$	9.21	0.18	$0 \rightarrow 24 A''$	9.20	0.18	$0 \rightarrow 19A'$	9.32	2.69
$0 \rightarrow 44$	9.26	0.59	$0 \rightarrow 44$	9.25	0.55	$0 \rightarrow 25 A''$	9.24	0.58	$0 \rightarrow 25 A''$	9.35	0.01
$0\rightarrow 45$	9.30	0.25	$ 0 \rightarrow 45$	9.30	0.23	$\downarrow 0 \rightarrow 20 A'$	9.38	1.74	$0 \rightarrow 20 A'$	9.39	1.53

Table S5: Thymine. CAM-B3LYP/aug-cc-pVDZ ESA transition energies (ΔE , eV) and oscillator strengths (f) from 1A' = $\pi\pi^*$, computed with the Tamm-Dancoff approximation (CIS), TDDFT and TDDFT in non-equilibrium PCM (chloroform).

					ESA:	$S_2 (1A') \rightarrow S_3$					
TDA	. (Turbo	omole)	TDDF	T (Tur	bomole)	TDDF	T (Dalt	on)	TDDFT PCM (Dalton)		
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$
$2 \rightarrow 3$	0.31	0.13	$2 \rightarrow 3$	0.54	0.20	$1A' \rightarrow 2A''$	0.53	0.20	$1A' \rightarrow 1A''$	0.19	0.00
$2 \rightarrow 4$	0.97	0.00	$2 \rightarrow 4$	1.19	0.00	$1A' \rightarrow 3A''$	1.19	0.00	$1A' \rightarrow 2A''$	0.86	0.30
$2\rightarrow 5$	1.08	0.15	$2 \rightarrow 5$	1.31	0.16	1A'→4A"	1.30	0.17	$1A' \rightarrow 2A'$	1.32	0.57
$2 \rightarrow 6$	1.24	0.11	$2 \rightarrow 6$	1.38	0.99	$1A' \rightarrow 2A'$	1.38	0.97	1A'→3A"	1.46	0.04
$2 \rightarrow 7$	1.28	1.83	$2 \rightarrow 7$	1.41	1.09	$1A' \rightarrow 3A'$	1.41	1.07	$1A' \rightarrow 4A''$	1.47	0.01
$2 \rightarrow 8$	1.32	0.28	$2 \rightarrow 8$	1.47	0.12	1A'→5A"	1.46	0.11	$1A' \rightarrow 3A'$	1.61	1.70
$2 \rightarrow 9$	1.66	0.00	$2 \rightarrow 9$	1.88	0.60	$1A' \rightarrow 4A'$	1.88	0.63	1A'→5A"	1.63	0.17
$2 \rightarrow 10$	1.66	0.56	$2 \rightarrow 10$	1.88	0.00	1A'→6A"	1.88	0.00	$1A' \rightarrow 4A'$	1.97	0.43
$2 \rightarrow 11$	1.69	0.11	$2 \rightarrow 11$	1.91	0.16	$1A' \rightarrow 5A'$	1.91	0.15	$1A' \rightarrow 5A'$	2.16	0.05
$2\rightarrow 12$	1.96	0.00	$2 \rightarrow 12$	2.19	0.00	1A'→7A"	2.19	0.00	1A'→6A"	2.16	0.00
$2\rightarrow 13$	1.97	0.00	$2 \rightarrow 13$	2.20	0.00	1A'→8A"	2.20	0.00	1A'→7A"	2.33	0.19
$2 \rightarrow 14$	2.00	0.07	$2 \rightarrow 14$	2.23	0.08	1A'→9A"	2.22	0.07	1A'→8A"	2.38	0.00
$2\rightarrow 15$	2.05	0.28	$2 \rightarrow 15$	2.26	0.20	1A'→6A'	2.26	0.21	1A'→9A"	2.41	0.01
$2\rightarrow 16$	2.12	0.00	$2 \rightarrow 16$	2.35	0.00	1A'→10A"	2.33	0.00	1A'→10A"	2.45	0.00
$2\rightarrow 17$	2.24	0.62	$2 \rightarrow 17$	2.45	0.55	1A'→7A'	2.45	0.59	1A'→6A'	2.54	0.45
$2 \rightarrow 18$	2.41	0.21	$2 \rightarrow 18$	2.57	0.03	1A'→8A'	2.56	0.03	$1A' \rightarrow 7A'$	2.58	0.37
$2\rightarrow 19$	2.44	0.01	$2 \rightarrow 19$	2.67	0.01	1A'→11A"	2.65	0.02	1A'→11A"	2.68	0.01
$2\rightarrow 20$	2.53	0.98	$2 \rightarrow 20$	2.74	1.19	1A'→9A'	2.73	1.21	1A'→8A'	2.76	1.61
$2\rightarrow 21$	2.53	0.00	$2 \rightarrow 21$	2.76	0.00	$1A' \rightarrow 12A''$	2.75	0.00	$1A' \rightarrow 9A'$	2.94	0.05
$2\rightarrow 22$	2.65	1.00	$2 \rightarrow 22$	2.82	0.37	$1A' \rightarrow 10A'$	2.81	0.37	1A'→10A'	3.08	6.92
$2\rightarrow 23$	2.75	0.16	$2 \rightarrow 23$	2.98	0.09	1A'→13A"	2.97	0.09	$1A' \rightarrow 11A'$	3.17	0.08
$2\rightarrow 24$	2.76	4.98	$2 \rightarrow 24$	2.98	5.45	$1A' \rightarrow 11A'$	2.98	5.24	1A'→12A"	3.19	0.01
$2\rightarrow 25$	2.87	0.07	$2\rightarrow 25$	3.08	0.02	$1A' \rightarrow 12A'$	3.07	0.02	1A'→13A"	3.22	0.07
$2\rightarrow 26$	2.87	0.01	$2 \rightarrow 26$	3.10	0.01	1A'→14A"	3.09	0.01	1A'→14A"	3.27	0.01
$2\rightarrow 27$	3.00	0.06	$2\rightarrow 27$	3.23	0.04	1A'→13A'	3.22	0.04	1A'→15A"	3.40	0.31
$2\rightarrow 28$	3.07	0.15	$2 \rightarrow 28$	3.30	0.16	1A'→15A"	3.29	0.25	$1A' \rightarrow 12A'$	3.42	3.36
$2\rightarrow 29$	3.12	0.23	$2 \rightarrow 29$	3.35	0.20	1A'→16A"	3.30	0.06	1A'→16A"	3.43	0.00
$2 \rightarrow 30$	3.20	0.17	$2 \rightarrow 30$	3.41	9.04	$1A' \rightarrow 14A'$	3.41	3.65	1A'→13A'	3.48	11.71
$2 \rightarrow 31$	3.27	0.04	$2 \rightarrow 31$	3.43	4.55	1A'→15A'	3.43	8.05	1A'→17A"	3.58	0.02
$2 \rightarrow 32$	3.27	0.03	$2 \rightarrow 32$	3.48	0.01	1A'→17A"	3.47	0.09	$1A' \rightarrow 14A'$	3.63	0.07
$2 \rightarrow 33$	3.29	0.06	$2 \rightarrow 33$	3.50	0.04	1A'→16A'	3.48	0.01	1A'→18A"	3.63	0.02
$2 \rightarrow 34$	3.31	0.00	$2 \rightarrow 34$	3.52	0.06	1A'→18A"	3.51	0.05	1A'→19A"	3.66	0.00
$2 \rightarrow 35$	3.32	12.93	$2 \rightarrow 35$	3.53	0.01	1A'→19A"	3.53	0.01	$1A' \rightarrow 15A'$	3.69	0.11
$2 \rightarrow 36$	3.35	0.12	$2 \rightarrow 36$	3.58	0.08	1A'→20A"	3.58	0.09	1A'→16A'	3.75	0.07
$2 \rightarrow 37$	3.42	0.05	$2 \rightarrow 37$	3.64	0.01	1A'→17A'	3.63	0.01	1A'→20A"	3.80	0.04
$2 \rightarrow 38$	3.46	0.04	$2 \rightarrow 38$	3.69	0.04	1A'→21A"	3.67	0.04	1A'→21A"	3.84	0.05
$2 \rightarrow 39$	3.51	0.03	$2 \rightarrow 39$	3.73	0.03	1A'→22A"	3.73	0.03	1A'→17A'	3.91	0.02
$2 \rightarrow 40$	3.55	0.03	$2 \rightarrow 40$	3.78	0.02	1A'→18A'	3.76	0.01	1A'→22A"	3.93	0.00
$2 \rightarrow 41$	3.67	0.00	$2 \rightarrow 41$	3.90	0.00	1A'→23A"	3.89	0.00	$1A' \rightarrow 23A''$	4.05	0.50
$2 \rightarrow 42$	3.68	0.03	$2 \rightarrow 42$	3.91	0.03	1A'→19A'	3.90	0.05	1A'→18A'	4.08	0.06
$2 \rightarrow 43$	3.73	0.06	$2 \rightarrow 43$	3.96	0.04	1A'→24A"	3.95	0.05	$1A' \rightarrow 24A''$	4.12	0.01
$2 \rightarrow 44$	3.78	0.23	$2 \rightarrow 44$	4.01	0.20	1A'→25A"	3.99	0.18	$1A' \rightarrow 19A'$	4.15	1.19
$2 \rightarrow 45$	3.82	0.57	$2 \rightarrow 45$	4.06	0.58	$ 1A' \rightarrow 20A'$	4.13	0.54	$1A' \rightarrow 25A''$	4.18	0.01
$2 \rightarrow 46$	3.88	0.01	$2 \rightarrow 46$	4.11	0.01				$1A' \rightarrow 20A'$	4.22	0.03

Table S6: Thymine. CAM-B3LYP/aug-cc-pVDZ ESA transition energies (ΔE , eV) and oscillator strengths (f) from 1A" = $n\pi^*$ computed in the Tamm-Dancoff approximation (CIS), TDDFT and TDDFT with non-equilibrium PCM (chloroform).

					ESA: S	$_1/1A'/n\pi^* \rightarrow$	$\cdot \mathbf{S}_n$					
TDA	(Turbo	omole)	TDDF	T (Tur	bomole)	TDDF	T (Dalt	on)	TDDFT I	PCM (D	alton)	
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	
$1 \rightarrow 2$	0.33	0.00	$1 \rightarrow 2$	0.12	0.00	$1A" \rightarrow 1A'$	0.12	0.00	$1A" \rightarrow 2A"$	0.67	0.00	
$1 \rightarrow 3$	0.64	0.00	$1 \rightarrow 3$	0.66	0.00	$1A" \rightarrow 2A"$	0.65	0.00	$1A'' \rightarrow 2A'$	1.12	0.00	
$1 \rightarrow 4$	1.30	0.16	$1 \rightarrow 4$	1.31	0.15	$1A'' \rightarrow 3A''$	1.31	0.14	$1A'' \rightarrow 3A''$	1.27	0.01	
$1 \rightarrow 5$	1.41	0.00	$1 \rightarrow 5$	1.43	0.00	$1A'' \rightarrow 4A''$	1.42	0.00	$ 1A'' \rightarrow 4A''$	1.28	0.08	
$1 \rightarrow 6$	1.57	0.00	$1 \rightarrow 6$	1.50	0.00	$ 1A'' \rightarrow 2A' $	1.50	0.00	$1A'' \rightarrow 3A'$	1.41	0.00	
$1 \rightarrow 7$	1.61	0.00	$1 \rightarrow 7$	1.53	0.00	$1A'' \rightarrow 3A'$	1.53	0.00	$1A'' \rightarrow 5A''$	1.43	0.00	
$1 \rightarrow 8$	1.65	0.00	$1 \rightarrow 8$	1.59	0.00	$1A'' \rightarrow 5A''$	1.57	0.00	$1A'' \rightarrow 4A'$	1.78	0.01	
$1 \rightarrow 9$ $1 \rightarrow 10$	1.99	1.31	$1 \rightarrow 9$	2.00	0.05	$1A^{"} \rightarrow 4A^{"}$ $1A^{"} \rightarrow 6A^{"}$	1.99	0.05	$1A^{"} \rightarrow 5A^{"}$	1.90	0.13	
$1 \rightarrow 10$ $1 \rightarrow 11$	1.99	0.05	$1 \rightarrow 10$	2.00	1.28	$1A^{n} \rightarrow 0A^{n}$ $1A^{n} \rightarrow 5A^{n}$	2.00	1.22	$1A^{"} \rightarrow 0A^{"}$ $1A^{"} \rightarrow 7A^{"}$	1.97	1.40	
$1 \rightarrow 11$ $1 \rightarrow 12$	2.02	0.09	$1 \rightarrow 11$	2.03	0.08	$1A \rightarrow 3A$ $1A'' \rightarrow 7A''$	2.02	0.09	$1A \rightarrow iA$ $1A^{"} \rightarrow 8A^{"}$	$\frac{2.14}{2.10}$	0.02	
$1 \rightarrow 12$ $1 \rightarrow 12$	2.29	0.00	$1 \rightarrow 12$ $1 \rightarrow 12$	2.01	0.00	$1A \rightarrow iA$ $1A'' \rightarrow 8A''$	2.31	0.00	$1A \rightarrow 0A$	2.19	0.00	
$1 \rightarrow 13$ $1 \rightarrow 14$	2.30	0.94	$1 \rightarrow 13$	2.32	0.95	$1A \rightarrow 0A$	2.32	0.73	$1A^{3} \rightarrow 9A^{3}$	2.21 2.25	0.00	
$1 \rightarrow 14$ 1 \ 15	$2.00 \\ 2.27$	0.03	1 - 14 1 $1 - 15$	2.00	0.02	$1\Lambda, -3\Lambda$	$2.00 \\ 2.37$	0.09	$1A \rightarrow 10A$ $1A'' \rightarrow 6A'$	2.20	0.00	
$1 \rightarrow 15$ $1 \rightarrow 16$	2.57	0.02	$1 \rightarrow 15$	$\frac{2.36}{2.46}$	0.02	$1A^{"} \rightarrow 0A^{"}$	2.57	0.02	$1A^{,} \rightarrow 0A^{,}$	$\frac{2.55}{2.30}$	0.00	
$1 \rightarrow 10$ $1 \rightarrow 17$	2.40 2.57	0.01	$1 \rightarrow 10$	2.40 2.57	0.01	$1A^{"} \rightarrow 10A^{"}$	2.40 2.45	0.01	$1A^{"} \rightarrow 1A^{"}$	$\frac{2.00}{2.00}$	0.01	
$1 \rightarrow 17$ $1 \rightarrow 18$	2.01 2 74	0.00	$1 \rightarrow 18$	$\frac{2.01}{2.68}$	0.04	$1A" \rightarrow 7A'$	2.40 2.56	0.00	$1A^{"} \rightarrow 8A^{"}$	2.43 2.56	0.00	
$1 \rightarrow 19$	2.14 2.77	0.00	$1 \rightarrow 19$	$\frac{2.00}{2.79}$	0.00	$1A" \rightarrow 8A'$	$\frac{2.00}{2.67}$	0.06	$1A^{"} \rightarrow 9A^{'}$	$\frac{2.00}{2.74}$	0.00	
$1 \rightarrow 20$	2.85	0.01	$1 \rightarrow 20$	2.86	0.00	$1A^{"} \rightarrow 11A^{"}$	2.77	0.00	$1A^{"} \rightarrow 10A^{'}$	2.89	0.00	
$1 \rightarrow 21$	2.86	0.01	$1 \rightarrow 21$	2.88	0.01	$1A" \rightarrow 9A'$	2.84	0.00	$1A^{"} \rightarrow 11A^{'}$	2.97	0.06	
$1 \rightarrow 22$	2.98	0.00	$1 \rightarrow 22$	2.93	0.01	$1A" \rightarrow 12A"$	2.87	0.01	$1A" \rightarrow 12A"$	3.00	0.00	
$1 \rightarrow 23$	3.07	0.04	$1 \rightarrow 23$	3.10	0.04	$1A" \rightarrow 10A'$	2.92	0.01	$1A" \rightarrow 13A"$	3.03	0.11	
$1 \rightarrow 24$	3.08	0.00	$1 \rightarrow 24$	3.10	0.00	$1A" \rightarrow 13A"$	3.09	0.04	$1A" \rightarrow 14A"$	3.08	0.00	
$1 \rightarrow 25$	3.20	0.00	$1 \rightarrow 25$	3.19	0.01	$1A" \rightarrow 11A'$	3.09	0.00	$1A" \rightarrow 15A"$	3.21	0.01	
$1 \rightarrow 26$	3.20	0.00	$1 \rightarrow 26$	3.22	0.00	$1A" \rightarrow 12A'$	3.18	0.01	$1A^{"} \rightarrow 12A^{'}$	3.23	0.01	
$1 \rightarrow 27$	3.33	0.18	$1 \rightarrow 27$	3.35	0.17	$1A" \rightarrow 14A"$	3.21	0.00	$1A" \rightarrow 16A"$	3.24	0.00	
$1 \rightarrow 28$	3.40	0.00	$1 \rightarrow 28$	3.42	0.00	$1A" \rightarrow 13A'$	3.33	0.16	$1A^{"} \rightarrow 13A^{'}$	3.29	0.00	
$1 \rightarrow 29$	3.45	0.00	$1 \rightarrow 29$	3.47	0.00	$ 1A" \rightarrow 15A"$	3.40	0.00	$ 1A" \rightarrow 17A"$	3.39	0.00	
$1 \rightarrow 30$	3.52	0.02	$1 \rightarrow 30$	3.53	0.00	$1A^{"} \rightarrow 16A^{"}$	3.41	0.00	$ 1A" \rightarrow 14A'$	3.43	0.22	
$1 \rightarrow 31$	3.59	0.01	$1 \rightarrow 31$	3.55	0.01	$1A'' \rightarrow 14A'$	3.52	0.01	$ 1A^{"} \rightarrow 18A^{"}$	3.44	1.33	
$1 \rightarrow 32$	3.60	0.00	$1 \rightarrow 32$	3.60	0.00	$1A'' \rightarrow 15A'$	3.54	0.01	$ 1A'' \rightarrow 19A''$	3.47	0.00	
$1 \rightarrow 33$	3.62	0.01	$1 \rightarrow 33$	3.61	0.01	$1A'' \rightarrow 1'(A'')$	3.59	0.01	$1A'' \rightarrow 15A'$	3.50	0.00	
$1 \rightarrow 34$	3.64	0.75	$1 \rightarrow 34$	3.64	0.01	$1A'' \rightarrow 16A'$	3.59	0.00	$ 1A'' \rightarrow 16A' $	3.55	0.01	
$1 \rightarrow 35$	3.65	0.00	$1 \rightarrow 35$	3.65	0.81	$1A'' \rightarrow 18A''$	3.63	0.00	$1A'' \rightarrow 20A''$	3.60	0.64	
$1 \rightarrow 30$	3.68	0.15	$1 \rightarrow 36$	3.70	0.11	$1A'' \rightarrow 19A''$	3.65	0.66	$1A'' \rightarrow 21A''$	3.65	0.14	
$1 \rightarrow 37$	3.74	0.00	$1 \rightarrow 3i$	3.76	0.01	$1A'' \rightarrow 20A''$	3.69	0.11	$ 1A'' \rightarrow 1/A' 1A'' \rightarrow 00A'' $	3.71	0.00	
$1 \rightarrow 38$ $1 \rightarrow 20$	3.18	0.01	$1 \rightarrow 38$	3.80	0.01	$1A^{"} \rightarrow 1/A^{"}$ $1A^{"} \rightarrow 21A^{"}$	3.70	0.01	$1A^{"} \rightarrow 22A^{"}$ $1A^{"} \rightarrow 22A^{"}$	3.13 2 0 E	0.00	
$1 \rightarrow 39$ $1 \rightarrow 40$	3.84	0.43 0.01	$1 \rightarrow 39$	2.00	0.40	$1A \rightarrow 21A$ $1A^{"} \rightarrow 22A^{"}$	0.19 2.05	0.01	$1A \rightarrow 25A$ $1A'' \rightarrow 18A'$	3.00	0.01	
$1 \rightarrow 40$ 1 $\sqrt{11}$	3.00	0.01	$1 \rightarrow 40$	3.90	0.01	$1A \rightarrow 22A$ $1A'' \rightarrow 18A'$	3 88	0.39	$1A^{\rightarrow} 10A^{\rightarrow}$	3.00	0.04	
$1 \rightarrow 41$ $1 \rightarrow 42$	3.99	0.00	$1 \rightarrow 41$ $1 \rightarrow 42$	4.02 4.02	0.00	$1A^{\rightarrow}10A^{\rightarrow}1$	J.00 4.00	0.02	$1A \rightarrow 24A$ $1A'' \rightarrow 10A'$	3.95	0.00	
$1 \rightarrow 42$	4.01	2.02	$1 \rightarrow 42$	4.02	2.02	$1A^{,} \rightarrow 10A^{,}$	4.00	0.00	$1A^{,} \rightarrow 25A^{,}$	3.90	0.00	
$1 \rightarrow 43$	4.00	0.01	$1 \rightarrow 43$	4.08	0.02	$1A^{-719A}$	4.01 4.07	2.02	$1A^{-720A}$, $1A^{-720A}$,	4 03	0.04	
$1 \rightarrow 45$	4 15	0.01	$1 \rightarrow 45$	$\frac{4.12}{4.17}$	0.01	$1A^{"} \rightarrow 25A^{"}$	4 11	0.02	111 72011	4.00	0.00	
$1 \rightarrow 46$	4.21	0.01	$1 \rightarrow 46$	4.23	0.01	$1A^{"} \rightarrow 20A^{"}$	4.25	0.00				
	1.41	0.01	1 1 / 10	1.20	0.01	111 /2011	1.20	0.00				

0	OPA		E	$SA(n\pi^*/S_1)$)	ES	$SA(\pi\pi^*/S_2)$	»)
$S_0 \rightarrow S_n$	$\omega [\mathrm{eV}]$	$f \times 100$	$S_1 \to S_n$	ω [eV]	$f \times 100$	$S_2 \rightarrow S_n$	ω [eV]	$f \times 100$
$0 \rightarrow 1$	5.258	0.00	$1 \rightarrow 2$	0.253	0.00	$2 \rightarrow 3$	0.253	0.11
$0 \rightarrow 2$	5.512	20.70	$1 \rightarrow 3$	0.506	0.00	$2 \rightarrow 4$	1.058	0.05
$0 \rightarrow 3$	5.764	0.04	$1 \rightarrow 4$	1.312	0.00	$2 \rightarrow 5$	1.155	0.00
$0 \rightarrow 4$	6.570	0.11	$1 \rightarrow 5$	1.408	0.16	$2 \rightarrow 6$	1.220	0.23
$0 \rightarrow 5$	6.666	0.00	$1 \rightarrow 6$	1.473	0.00	$2 \rightarrow 7$	1.229	0.76
$0 \rightarrow 6$	6.732	0.00	$1 \rightarrow 7$	1.483	0.00	$2 \rightarrow 8$	1.378	2.04
$0 \rightarrow 7$	6.741	5.49	$1 \rightarrow 8$	1.632	0.00	$2 \rightarrow 9$	1.606	0.65
$0 \rightarrow 8$	6.890	16.84	$1 \rightarrow 9$	1.859	0.03	$2 \rightarrow 10$	1.629	0.04
$0 \rightarrow 9$	7.117	6.69	$1 \rightarrow 10$	1.883	0.13	$2 \rightarrow 11$	1.833	0.00
$0 \rightarrow 10$	7.141	3.80	$1 \rightarrow 11$	2.086	0.00	$2 \rightarrow 12$	1.997	0.08
$0 \rightarrow 11$	7.344	0.00	$1 \rightarrow 12$	2.251	0.01	$2 \rightarrow 13$	2.074	0.43
$0 \rightarrow 12$	7.509	0.32	$1 \rightarrow 13$	2.328	0.01	$2 \rightarrow 14$	2.095	0.03
$0 \rightarrow 13$	7.586	7.46	$1 \rightarrow 14$	2.349	0.02	$2 \rightarrow 15$	2.131	0.00
$0 \rightarrow 14$	7.607	1.33	$1 \rightarrow 15$	2.385	2.40	$2 \rightarrow 16$	2.226	0.81
$0 \rightarrow 15$	7.643	0.10	$1 \rightarrow 16$	2.479	0.08	$2 \rightarrow 17$	2.328	0.01
$0 \rightarrow 16$	7.737	5.47	$1 \rightarrow 17$	2.581	2.28	$2 \rightarrow 18$	2.336	0.58
$0 \rightarrow 17$	7.840	0.04	$1 \rightarrow 18$	2.590	0.04	$2 \rightarrow 19$	2.415	0.01
$0 \rightarrow 18$	7.848	22.36	$1 \rightarrow 19$	2.668	0.00	$2 \rightarrow 20$	2.460	0.00
$0 \rightarrow 19$	7.926	0.16	$1 \rightarrow 20$	2.713	0.01	$2 \rightarrow 21$	2.506	1.38
$0 \rightarrow 20$	7.972	0.55	$1 \rightarrow 21$	2.760	0.00	$2 \rightarrow 22$	2.618	1.02
$0 \rightarrow 21$	8.018	14.06	$1 \rightarrow 22$	2.871	0.00	$2 \rightarrow 23$	2.685	0.14
$0 \rightarrow 22$	8.129	7.08	$1 \rightarrow 23$	2.939	0.15	$2 \rightarrow 24$	2.711	5.74
$0 \rightarrow 23$	8.197	0.03	$1 \rightarrow 24$	2.965	0.00	$2 \rightarrow 25$	2.832	0.00
$0 \rightarrow 24$	8.223	0.42	$1 \rightarrow 25$	3.086	0.00	$2 \rightarrow 26$	2.892	0.03
$0 \rightarrow 25$	8.344	0.06	$1 \rightarrow 26$	3.146	0.01	$2 \rightarrow 27$	2.975	0.09
$0 \rightarrow 26$	8.404	5.53	$1 \rightarrow 27$	3.229	0.22	$2 \rightarrow 28$	3.036	0.01
$0 \rightarrow 27$	8.487	0.20	$1 \rightarrow 28$	3.289	0.01	$2 \rightarrow 29$	3.090	0.02
$0 \rightarrow 28$	8.547	0.09	$1 \rightarrow 29$	3.344	0.00	$2 \rightarrow 30$	3.101	0.40
$0 \rightarrow 29$	8.602	0.96	$1 \rightarrow 30$	3.355	0.00	$2 \rightarrow 31$	3.200	0.01
$0 \rightarrow 30$	8.613	0.01	$1 \rightarrow 31$	3.453	0.00	$2 \rightarrow 32$	3.211	0.04
$0 \rightarrow 31$	8.712	0.01	$1 \rightarrow 32$	3.465	0.01	$2 \rightarrow 33$	3.283	0.17
$0 \rightarrow 32$	8.723	1.65	$1 \rightarrow 33$	3.536	0.01	$2 \rightarrow 34$	3.353	0.05
$0 \rightarrow 33$	8.794	0.73	$1 \rightarrow 34$	3.607	0.06	$2 \rightarrow 35$	3.434	0.19
$0 \rightarrow 34$	8.865	0.01	$1 \rightarrow 35$	3.687	0.00	$2 \rightarrow 36$	3.457	0.07
$0 \rightarrow 35$	8.946	0.38	$1 \rightarrow 36$	3.710	0.00	$2 \rightarrow 37$	3.558	17.74
$0 \rightarrow 36$	8.968	0.17	$1 \rightarrow 37$	3.811	0.00	$2 \rightarrow 38$	3.609	0.01
$0 \rightarrow 37$	9.009	10.00	$1 \rightarrow 30$	3.602	0.01	$2 \rightarrow 39$	3.074	0.02
$0 \rightarrow 38$	9.120	0.45	$1 \rightarrow 39$	2.920	0.03	$2 \rightarrow 40$	3.708	0.02
$0 \rightarrow 39$	9.180	0.03	$1 \rightarrow 40$	2 004	0.18	$2 \rightarrow 41$	3.740	0.22
$0 \rightarrow 40$ $0 \rightarrow 41$	9.220	0.02	$1 \rightarrow 41$ $1 \rightarrow 42$	3.994 4.001	0.18	$2 \rightarrow 42$	3.141	0.03
$0 \rightarrow 41$ $0 \rightarrow 42$	9.252	0.21	$1 \rightarrow 42$ $1 \rightarrow 43$	4.001	0.02	$2 \rightarrow 43$ $2 \rightarrow 44$	3.860	0.47
$0 \rightarrow 42$ $0 \rightarrow 43$	9.209	0.21	$1 \rightarrow 45$ $1 \rightarrow 44$	4.029	2.38	$2 \rightarrow 44$ $2 \rightarrow 45$	3 873	0.05
$0 \rightarrow 44$	9.380	0.02	$1 \rightarrow 45$	4.122	1.34	$2 \rightarrow 46$	3 883	0.00
$0 \rightarrow 45$	9.384	0.10	$1 \rightarrow 46$	4.136	0.28	$2 \rightarrow 47$	3.893	0.38
$0 \rightarrow 46$	9.394	0.85	$1 \rightarrow 47$	4.146	0.00	$2 \rightarrow 48$	3.911	0.00
$0 \rightarrow 47$	9.404	0.35	$1 \rightarrow 48$	4,165	2.38	$2 \rightarrow 49$	4.029	0.03
$0 \rightarrow 48$	9.423	0.06	$1 \rightarrow 49$	4.282	0.27	$2 \rightarrow 50$	4.036	0.64
$0 \rightarrow 49$	9.541	0.00	$1 \rightarrow 50$	4.290	0.00	$2 \rightarrow 51$	4.058	0.22
$0 \rightarrow 50$	9.548	0.91	$1 \rightarrow 51$	4.311	0.00	$2 \rightarrow 52$	4.151	0.04
$0 \rightarrow 51$	9.569	0.83	$1 \rightarrow 52$	4.405	0.12			
$0 \rightarrow 52$	9.663	0.21						

Table S7: Thymine. CCSD/aug-cc-pVDZ OPA and ESA transition energies (ω , eV) and oscillator strengths (f).

Table S8: Thymine: CC3/aug-cc-pVDZ OPA and ESA transition energies (ω , eV) and oscillator strengths (f).

	OPA		ES	$SA (n\pi^*/S)$	1)	ES	$SA (\pi \pi^*/S)$	2)
$S_0 \to S_n$	$\omega [\mathrm{eV}]$	$f \times 100$	$S_1 \to S_n$	$\omega [\text{eV}]$	$f \times 100$	$S_2 \to S_n$	$\omega [\mathrm{eV}]$	$f \times 100$
$0 \rightarrow 1$	5.066	0.00	$1 \rightarrow 2$	0.213	0.00	$2 \rightarrow 3$	0.385	0.11
$0 \rightarrow 2$	5.280	15.91	$1 \rightarrow 3$	0.599	0.00	$2 \rightarrow 4$	1.094	1.13
$0 \rightarrow 3$	5.665	0.04	$1 \rightarrow 4$	1.307	0.00	$2 \rightarrow 5$	1.158	0.04
$0 \rightarrow 4$	6.373	4.89	$1 \rightarrow 5$	1.371	0.00	$2 \rightarrow 6$	1.192	0.00
$0 \rightarrow 5$	6.438	0.08	$1 \rightarrow 6$	1.406	0.47	$2 \rightarrow 7$	1.319	0.21
$0 \rightarrow 6$	6.472	0.00	$1 \rightarrow 7$	1.532	0.00	$2 \rightarrow 8$	1.329	0.77
$0 \rightarrow 7$	6.598	0.00	$1 \rightarrow 8$	1.543	0.01	$2 \rightarrow 9$	1.558	0.14
$0 \rightarrow 8$	6.609	16.91	$1 \rightarrow 9$	1.772	0.21	$2 \rightarrow 10$	1.632	0.00
$0 \rightarrow 9$	6.838	1.72	$1 \rightarrow 10$	1.846	1.78	$2 \rightarrow 11$	1.690	0.44
$0 \rightarrow 10$	6.912	0.10	$1 \rightarrow 11$	1.904	0.00	$2 \rightarrow 12$	1.890	0.00
$0 \rightarrow 11$	6.970	1.82	$1 \rightarrow 12$	2.103	0.00	$2 \rightarrow 13$	2.005	0.00
$0 \rightarrow 12$	7.169	0.00	$1 \rightarrow 13$	2.219	0.62	$2 \rightarrow 14$	2.029	0.61
$0 \rightarrow 13$	7.285	0.02	$1 \rightarrow 14$	2.242	0.00	$2 \rightarrow 15$	2.058	0.13
$0 \rightarrow 14$	7.309	5.51	$1 \rightarrow 15$	2.272	0.00	$2 \rightarrow 16$	2.165	0.13
$0 \rightarrow 15$	7.338	0.10	$1 \rightarrow 16$	2.379	0.11	$2 \rightarrow 17$	2.191	0.02
$0 \rightarrow 16$	7.445	0.67	$1 \rightarrow 17$	2.404	0.00	$2 \rightarrow 18$	2.301	0.31
$0 \rightarrow 17$	7.471	1.48	$1 \rightarrow 18$	2.515	0.00	$2 \rightarrow 19$	2.435	0.00
$0 \rightarrow 18$	7.581	25.60	$1 \rightarrow 19$	2.648	0.00	$2 \rightarrow 20$	2.487	0.35
$0 \rightarrow 19$	7.715	0.03	$1 \rightarrow 20$	2.700	0.02	$2 \rightarrow 21$	2.514	0.00
$0 \rightarrow 20$	7.766	11.18	$1 \rightarrow 21$	2.728	0.00	$2 \rightarrow 22$	2.592	1.40
$0 \rightarrow 21$	7.794	0.55	$1 \rightarrow 22$	2.805	0.00	$2 \rightarrow 23$	2.659	0.15
$0 \rightarrow 22$	7.871	11.97	$1 \rightarrow 23$	2.873	0.08	$2 \rightarrow 24$	2.799	5.05
$0 \rightarrow 23$	7.939	0.07	$1 \rightarrow 24$	3.013	0.00	$2 \rightarrow 25$	2.836	0.00
$0 \rightarrow 24$	8.079	0.78	$1 \rightarrow 25$	3.050	0.00	$2 \rightarrow 26$	2.873	0.15
$0 \rightarrow 25$	8.116	0.02	$1 \rightarrow 26$	3.086	0.14	$2 \rightarrow 27$	2.879	0.03
$0 \rightarrow 26$	8.153	3.42	$1 \rightarrow 27$	3.092	0.07	$2 \rightarrow 28$	3.132	0.01
$0 \rightarrow 27$	8.159	2.91	$1 \rightarrow 28$	3.346	0.01	$2 \rightarrow 29$	3.138	0.00
$0 \rightarrow 28$	8.412	0.78	$1 \rightarrow 29$	3.352	0.00	$2 \rightarrow 30$	3.144	0.03
$0 \rightarrow 29$	8.418	0.08	$1 \rightarrow 30$	3.357	0.01	$2 \rightarrow 31$	3.203	0.34
$0 \rightarrow 30$	8.423	0.69	$1 \rightarrow 31$	3.417	0.00	$2 \rightarrow 32$	3.233	0.02
$0 \rightarrow 31$	8.483	0.00	$1 \rightarrow 32$	3.447	0.00	$2 \rightarrow 33$	3.305	0.88
$0 \rightarrow 32$	8.513	0.02	$1 \rightarrow 33$	3.519	0.01	$2 \rightarrow 34$	3.339	9.50
$0 \rightarrow 33$	8.585	0.67	$1 \rightarrow 34$	3.552	0.00	$2 \rightarrow 35$	3.358	0.06
$0 \rightarrow 34$	8.619	13.81	$1 \rightarrow 35$	3.572	0.01	$2 \rightarrow 36$	3.392	0.05
$0 \rightarrow 35$	8.638	0.63	$1 \rightarrow 36$	3.606	0.23	$2 \rightarrow 37$	3.452	0.09
$0 \rightarrow 36$	8.672	0.02	$1 \rightarrow 37$	3.666	0.01	$2 \rightarrow 38$	3.524	0.03
$0 \rightarrow 37$	8.732	0.31	$1 \rightarrow 38$	3.738	0.00	$2 \rightarrow 39$	3.612	0.02
$0 \rightarrow 38$	8.804	0.17	$1 \rightarrow 39$	3.826	1.68	$2 \rightarrow 40$	3.656	0.00
$0 \rightarrow 39$	8.892	0.07	$1 \rightarrow 40$	3.869	0.00	$2 \rightarrow 41$	3.701	0.04
$0 \rightarrow 40$	8.935	0.09	$1 \rightarrow 41$	3.914	0.00	$2 \rightarrow 42$	3.716	0.01
$0 \rightarrow 41$	8.980	0.15	$1 \rightarrow 42$	3.929	2.12	$2 \rightarrow 43$	3.726	0.06
$0 \rightarrow 42$	8.995	0.38	$1 \rightarrow 43$	3.940	0.50	$2 \rightarrow 44$	3.810	0.02
$0 \rightarrow 43$	9.006	0.83	$1 \rightarrow 44$	4.024	2.55	$2 \rightarrow 45$	3.849	0.23
$0 \rightarrow 44$	9.090	0.18	$1 \rightarrow 45$	4.063	0.02	$2 \rightarrow 40$	3.878	2.17
$0 \rightarrow 45$ $0 \rightarrow 46$	9.129	0.02	$1 \rightarrow 40$	4.091	0.00	$2 \rightarrow 47$	3.884	0.25
$0 \rightarrow 40$ $0 \rightarrow 47$	9.107	(.08	$1 \rightarrow 4/$	4.098	0.00	$2 \rightarrow 48$	3.940	0.40
$0 \rightarrow 41$	9.104	0.24	$1 \rightarrow 40$	4.103	0.00	$2 \rightarrow 49$	3.901	0.00
$0 \rightarrow 48$ $0 \rightarrow 40$	9.219	0.19	$1 \rightarrow 49$ $1 \rightarrow 50$	4.194	0.00	$2 \rightarrow 50$	4.014	0.02
$0 \rightarrow 49$ $0 \rightarrow 50$	9.201	0.10	$1 \rightarrow 50$	4.441	0.01	$2 \rightarrow 51$ $2 \rightarrow 52$	4.073	0.02
$0 \rightarrow 50$ $0 \rightarrow 51$	9.490 0.355	0.00	$1 \rightarrow 51$	4.200	0.10	2 -7 52	4.000	0.09
$0 \rightarrow 52$	9.360	0.53	1 , 02	7.434	0.03			
0 / 01	0.000	0.00	1			1		

SS4.2 Cytosine

Table S9: Cytosine. CAM-B3LYP/aug-cc-pVDZ OPA excitation energies $(\Delta E, eV)$ and oscillator strengths (f): computed in the Tamm-Dancoff approximation (CIS), with TDFT in gas phase, and with non-equilibrium PCM (chloroform). First IP is 8.82 eV.

					OPA	$\mathbf{PA} \ (\mathbf{S}_0 \rightarrow \mathbf{S}_n)$					
TDA	(Turbo	omole)	TDDF	T (Tur	bomole)	TDD	FT (Da	lton)	TDDFT	PCM (Dalton)
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$
$0 \rightarrow 1$	5.17	8.34	$0 \rightarrow 1$	4.99	6.57	$0 \rightarrow 1A'$	4.98	6.56	$0 \rightarrow 1A'$	5.10	13.37
$0 \rightarrow 2$	5.32	0.22	$0 \rightarrow 2$	5.30	0.19	$0 \rightarrow 1A$ "	5.30	0.19	$0 \rightarrow 1A$ "	5.60	0.27
$0 \rightarrow 3$	5.64	0.47	$0 \rightarrow 3$	5.64	0.44	$0 \rightarrow 2A$ "	5.63	0.44	$0 \rightarrow 2A'$	5.92	20.42
$0 \rightarrow 4$	5.94	0.03	$0 \rightarrow 4$	5.91	12.38	$0 \rightarrow 2A'$	5.91	12.37	$0 \rightarrow 2A$ "	5.94	0.52
$0 \rightarrow 5$	6.07	11.68	$0 \rightarrow 5$	5.92	0.01	$0 \rightarrow 3A''$	5.92	0.01	$0 \rightarrow 3A''$	6.29	0.02
$0 \rightarrow 6$	6.12	0.01	$0 \rightarrow 6$	6.11	0.01	$0 \rightarrow 4A''$	6.11	0.02	$0 \rightarrow 3A'$	6.38	37.17
$0 \rightarrow 7$	6.15	0.30	$0 \rightarrow 7$	6.15	0.31	$0 \rightarrow 5A''$	6.14	0.28	$0 \rightarrow 4A''$	6.41	0.55
$0 \rightarrow 8$	6.26	0.99	$0 \rightarrow 8$	6.26	0.94	$0 \rightarrow 6A''$	6.24	0.96	$0 \rightarrow 5A''$	6.56	0.01
$0 \rightarrow 9$	6.58	0.58	$0 \rightarrow 9$	6.54	33.95	$0 \rightarrow 3A'$	0.54	33.75	$0 \rightarrow 6A''$	6.69	0.90
$0 \rightarrow 10$	0.00	10.01	$0 \rightarrow 10$	0.08	0.57	$0 \rightarrow i A^{n}$	0.00	0.57	$0 \rightarrow i A$	0.11	0.70
$0 \rightarrow 11$	0.10	18.89	$0 \rightarrow 11$	0.09 6 75	3.40	$0 \rightarrow 4A'$	0.08	3.49	$0 \rightarrow 4A'$	0.84	39.84
$0 \rightarrow 12$	0.70	0.10	$0 \rightarrow 12$	0.70	0.12	$0 \rightarrow \delta A$	0.70	0.12	$0 \rightarrow 6A$	0.93	0.22
$0 \rightarrow 13$	0.90	10.00	$0 \rightarrow 13$	6.05	22.84	$0 \rightarrow 5A$	6.02	22.39	$0 \rightarrow 5A$	7.14	0.17
$0 \rightarrow 14$ $0 \rightarrow 15$	0.99	19.99	$0 \rightarrow 14$ $0 \rightarrow 15$	0.95	0.00	$0 \rightarrow 9A$	0.95	8 01	$0 \rightarrow 9A$	7.20	0.40
$0 \rightarrow 15$	7.09	25.72	$0 \rightarrow 15$	7.07	0.81	$0 \rightarrow 0A$	7.00	0.01	$0 \rightarrow 0A$	7 3 3	0.61
$0 \rightarrow 10$ $0 \rightarrow 17$	$7.13 \\ 7.20$	12.83	$0 \rightarrow 10$ $0 \rightarrow 17$	7.08 7.18	3 20	$0 \rightarrow 10 A$ $0 \rightarrow 7 A$	7.08	3 10	$0 \rightarrow 10 A$	7 38	0.01
$0 \rightarrow 18$	7 25	0.00	$0 \rightarrow 18$	7 25	0.00	$0 \rightarrow 11 \text{ A}^{"}$	7 23	0.02	$0 \rightarrow 7 A^{,}$	$7.30 \\ 7.48$	1 36
$0 \rightarrow 10$ $0 \rightarrow 19$	$7.20 \\ 7.28$	0.00 0.41	$0 \rightarrow 10$ $0 \rightarrow 19$	$7.20 \\ 7.27$	0.00	$0 \rightarrow 12 \text{A}^{"}$	7.25 7.25	0.02 0.34	$0 \rightarrow 12 \text{ A}$	7.40 7.54	0.63
$0 \rightarrow 20$	7.42	4.00	$0 \rightarrow 20$	7.42	1.92	$0 \rightarrow 8 \overline{A}^{\prime}$	7.40	1.89	$0 \rightarrow 13$ Å"	7.72	0.14
$0 \rightarrow 21$	7.56	4.10	$0 \rightarrow 21$	7.56	3.80	$0 \rightarrow 9A'$	7.54	3.81	$0 \rightarrow 8A^{\prime}$	7.89	3.95
$0 \rightarrow 22$	7.72	2.04	$0 \rightarrow 22$	7.72	1.73	$0 \rightarrow 13 \text{A}$ "	7.70	0.05	$0 \rightarrow 9A'$	7.97	2.65
$0\rightarrow 23$	7.72	0.05	$0 \rightarrow 23$	7.72	0.04	$0 \rightarrow 10 \text{A}'$	7.70	1.67	$0 \rightarrow 14$ A"	8.01	0.62
$0\rightarrow 24$	7.77	0.87	$0 \rightarrow 24$	7.77	0.80	$0 \rightarrow 14$ A"	7.75	0.78	$0 \rightarrow 10 \text{A}'$	8.09	4.67
$0\rightarrow 25$	7.90	0.01	$0\rightarrow 25$	7.90	0.00	$0 \rightarrow 15 \text{A}$ "	7.88	0.01	$0 \rightarrow 15 \text{A}$ "	8.13	0.04
$0 \rightarrow 26$	7.94	0.35	$0 \rightarrow 26$	7.93	0.36	$0 \rightarrow 11 \text{A}'$	7.92	0.60	$0 \rightarrow 11 \text{A}'$	8.19	0.91
$0\rightarrow 27$	8.02	9.59	$0 \rightarrow 27$	7.99	4.91	$0 \rightarrow 12A'$	7.98	4.66	$0 \rightarrow 16 A$ "	8.30	0.52
$0 \rightarrow 28$	8.08	0.62	$0 \rightarrow 28$	8.07	0.93	$0 \rightarrow 13A'$	8.05	0.98	$0 \rightarrow 12A'$	8.34	0.45
$0\rightarrow 29$	8.10	0.08	$0 \rightarrow 29$	8.10	0.07	$0 \rightarrow 16 \text{A}^{"}$	8.10	0.07	$0 \rightarrow 17 \text{A}$ "	8.35	0.35
$0 \rightarrow 30$	8.24	0.23	$0 \rightarrow 30$	8.24	0.22	$0 \rightarrow 17$ A"	8.21	0.20	$0 \rightarrow 13A'$	8.38	2.40
$0 \rightarrow 31$	8.27	0.04	$0 \rightarrow 31$	8.26	0.11	$0 \rightarrow 14A'$	8.24	0.12	$0 \rightarrow 18$ A"	8.48	0.25
$0 \rightarrow 32$	8.33	1.62	$0 \rightarrow 32$	8.32	1.09	$0 \rightarrow 15 \text{A}'$	8.32	1.03	$0 \rightarrow 19A''$	8.52	0.03
$0 \rightarrow 33$	8.39	0.06	$0 \rightarrow 33$	8.38	0.05	$0 \rightarrow 18 \text{A}^{\prime\prime}$	8.37	0.04	$0 \rightarrow 14A'$	8.57	2.45
$0 \rightarrow 34$	8.42	2.09	$0 \rightarrow 34$	8.41	1.76	$0 \rightarrow 16A'$	8.40	1.80	$0 \rightarrow 15A'$	8.63	1.59
$0 \rightarrow 35$	8.45	2.30	$0 \rightarrow 35$	8.44	1.59	$0 \rightarrow 19A^{\prime\prime}$	8.43	0.02	$0 \rightarrow 16A'$	8.67	15.99
$0 \rightarrow 36$	8.45	0.03	$0 \rightarrow 30$	8.45	0.02	$0 \rightarrow 17A'$	8.43	1.52	$0 \rightarrow 17A'$	8.69	0.47
$0 \rightarrow 37$	8.01	0.57	$0 \rightarrow 37$	8.01	0.55	$0 \rightarrow 20 A^{\circ}$	8.01	0.55	$0 \rightarrow 20 A^{"}$	8.11	0.74
$0 \rightarrow 38$	0.00	0.01	$0 \rightarrow 30$	0.02 8.57	10.40	$0 \rightarrow 10 \text{A}^{\circ}$	0.02 8.54	10.00	$0 \rightarrow 21 A^{"}$	0.10	0.21
$0 \rightarrow 39$ $0 \rightarrow 40$	0.02 8.68	0.31	$0 \rightarrow 39$	8.60	0.79	$0 \rightarrow 21A$ $0 \rightarrow 10A$	8.57	0.01	$0 \rightarrow 22A$, $0 \rightarrow 18A$,	0.00	0.21
$0 \rightarrow 40$ $0 \rightarrow 41$	8 71	5.55 6.08	$0 \rightarrow 40$	8.68	0.01	$0 \rightarrow 22 \Delta$ "	8.66	0.75 0.47	$0 \rightarrow 19 \Lambda$	8.00	1.04
$0 \rightarrow 42$	8 73	0.50	$0 \rightarrow 42$	8 73	0.10	$0 \rightarrow 20 \text{A}$	8.67	0.14	$0 \rightarrow 23 \text{A}$ "	8 96	0.11
$0 \rightarrow 43$	8.85	0.06	$0 \rightarrow 43$	8.85	0.06	$0 \rightarrow 23A$ "	8.80	0.06	$0 \rightarrow 20 \text{Å}$	9.07	1.01
$0 \rightarrow 44$	8.94	3.66	$0 \rightarrow 44$	8.93	3.19	$0 \rightarrow 24 \text{A}$ "	9.02	0.70	$0 \rightarrow 24 \text{A}$ "	9.10	0.12
$0\rightarrow 45$	8.98	0.41	$0 \rightarrow 45$	8.96	0.32	$0 \rightarrow 25 \text{A}$ "	9.04	0	$0 \rightarrow 25 \text{A}$ "	9.26	1.37

Table S10: Cytosine. CAM-B3LYP/aug-cc-pVDZ ESA transition energies $(\Delta E, eV)$ and oscillator strengths (f) from $1A''S_2/n\pi^*/S_2$, computed in the Tamm-Dancoff approximation (CIS), with TDDFT in gas phase, and (TDDFT in non-equilibrium PCM (chloroform).

					ESA:	$\mathbf{A}:\mathbf{S}_2 \; (1\mathbf{A}") o \mathbf{S}_n$					
TDA	. (Turbe	omole)	TDDF	T (Tur	bomole)	TDDF'	T (Dalt	on)	TDDFT I	PCM (D	alton)
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$
$2 \rightarrow 3$	0.32	0.00	$2 \rightarrow 3$	0.35	0.00	$1A" \rightarrow 2A"$	0.34	0.00	$1A" \rightarrow 2A'$	0.32	0.00
$2 \rightarrow 4$	0.62	0.34	$2 \rightarrow 4$	0.62	0.00	$1A^{"}\rightarrow 2A^{'}$	0.62	0.00	$1A" \rightarrow 2A"$	0.35	0.00
$2 \rightarrow 5$	0.74	0.00	$2 \rightarrow 5$	0.63	0.31	$1A" \rightarrow 3A"$	0.63	0.32	$1A" \rightarrow 3A"$	0.69	0.15
$2 \rightarrow 6$	0.80	0.28	$2 \rightarrow 6$	0.82	0.27	$1A" \rightarrow 4A"$	0.82	0.27	$1A^{"}\rightarrow 3A^{'}$	0.78	0.00
$2 \rightarrow 7$	0.83	0.04	$2 \rightarrow 7$	0.85	0.03	$1A" \rightarrow 5A"$	0.84	0.03	$1A" \rightarrow 4A"$	0.81	0.02
$2 \rightarrow 8$	0.94	0.01	$2 \rightarrow 8$	0.96	0.01	$1A" \rightarrow 6A"$	0.95	0.01	$1A" \rightarrow 5A"$	0.96	0.51
$2 \rightarrow 9$	1.26	0.00	$2 \rightarrow 9$	1.24	0.00	$1A^{"}\rightarrow 3A^{'}$	1.24	0.00	$1A" \rightarrow 6A"$	1.09	0.00
$2 \rightarrow 10$	1.34	0.03	$2 \rightarrow 10$	1.28	0.00	$1A" \rightarrow 7A"$	1.27	0.00	$1A" \rightarrow 7A"$	1.17	0.00
$2 \rightarrow 11$	1.42	0.04	$2 \rightarrow 11$	1.39	0.06	$1A^{"} \rightarrow 4A^{'}$	1.38	0.06	$1A" \rightarrow 4A'$	1.24	0.00
$2 \rightarrow 12$	1.44	0.52	$2 \rightarrow 12$	1.45	0.53	$1A" \rightarrow 8A"$	1.45	0.53	1A"→8A"	1.33	0.40
$2 \rightarrow 13$	1.63	0.03	$2 \rightarrow 13$	1.61	0.02	$1A" \rightarrow 5A'$	1.61	0.03	$1A" \rightarrow 5A'$	1.54	0.08
$2 \rightarrow 14$	1.67	0.09	$2 \rightarrow 14$	1.65	0.03	$1A" \rightarrow 9A"$	1.64	0.03	$1A" \rightarrow 9A"$	1.66	0.01
$2 \rightarrow 15$	1.77	0.01	$2 \rightarrow 15$	1.77	0.15	$1A^{"} \rightarrow 6A^{'}$	1.76	0.16	$1A" \rightarrow 6A'$	1.67	0.00
$\overline{2} \rightarrow 16$	1.81	0.06	$2 \rightarrow 16$	1.79	0.01	$1A^{"} \rightarrow 10A^{"}$	1.78	0.01	$1A^{"} \rightarrow 10A^{"}$	1.73	0.03
$2 \rightarrow 17$	1.88	0.01	$2 \rightarrow 17$	1.88	0.01	$1A" \rightarrow 7A'$	1.88	0.01	$1A^{"} \rightarrow 11A^{"}$	1 78	0.03
$2 \rightarrow 18$	1.93	0.02	$2 \rightarrow 18$	1.95	0.02	$1A^{"} \rightarrow 11A^{"}$	1.94	0.01	$1A" \rightarrow 7A'$	1.88	0.29
$2 \rightarrow 19$	1 95	0.02	$2 \rightarrow 19$	1 98	0.01	$1A" \rightarrow 12A"$	1 96	0.02	$1A" \rightarrow 12A"$	1 94	0.04
$\overline{2} \rightarrow \overline{20}$	2.10	0.02	$\overline{2} \rightarrow \overline{20}$	2.12	0.02	$1A^{"} \rightarrow 8A^{'}$	2.11	0.02	$1A^{"} \rightarrow 13A^{"}$	2.12	0.00
$\overline{2} \rightarrow \overline{2}\overline{1}$	2.24	0.01	$2 \rightarrow 21$	2.26	0.01	$1A^{"} \rightarrow 9A^{'}$	2.24	0.01	$1A" \rightarrow 8A'$	2.29	0.01
$\overline{2} \rightarrow \overline{2}\overline{2}$	2.40	0.00	$2 \rightarrow 22$	2.42	0.00	$1A^{"} \rightarrow 13A^{"}$	2.41	0.00	$1A" \rightarrow 9A'$	2.37	0.02
$\overline{2} \rightarrow \overline{2}\overline{3}$	2.40	0.00	$2 \rightarrow 2\overline{3}$	2.42	0.00	$1A^{"} \rightarrow 10A^{'}$	2.41	0.00	$1A" \rightarrow 14A"$	2.41	0.00
$\overline{2} \rightarrow \overline{24}$	2.45	0.00	$2 \rightarrow 24$	2.47	0.00	$1A^{"} \rightarrow 14A^{"}$	2.46	0.00	$1A^{"} \rightarrow 10A^{'}$	2.49	0.04
$2 \rightarrow 25$	2.58	0.01	$2 \rightarrow 25$	2.60	0.01	$1A^{"} \rightarrow 15A^{"}$	2.59	0.01	$1A^{"} \rightarrow 15A^{"}$	2.53	0.01
$\overline{2} \rightarrow \overline{2}6$	2.62	0.02	$2 \rightarrow \overline{26}$	2.64	0.02	$1A^{,*} \rightarrow 11A^{,*}$	$\frac{1}{2.62}$	0.03	$1A^{"} \rightarrow 11A^{'}$	2.59	0.00
$\overline{2} \rightarrow \overline{2}\overline{7}$	2.70	0.04	$2 \rightarrow 27$	2.69	0.04	$1A^{"} \rightarrow 12A^{'}$	2.69	0.03	$1A^{"} \rightarrow 16A^{"}$	$\frac{1}{2}$,70	0.00
$2 \rightarrow 28$	2.75	0.03	$2 \rightarrow 28$	2.77	0.03	$1A^{"} \rightarrow 13A^{'}$	$\frac{1}{2}$ 76	0.02	$1A" \rightarrow 12A'$	2.74	0.00
$\overline{2} \rightarrow \overline{2} \overline{9}$	2.78	0.07	$2 \rightarrow 29$	2.80	0.07	$1A^{"} \rightarrow 16A^{"}$	2.80	0.08	$1A" \rightarrow 17A"$	2.75	0.14
$\overline{2} \rightarrow \overline{30}$	2.92	0.00	$2 \rightarrow \overline{30}$	2.94	0.00	$1A^{"} \rightarrow 17A^{"}$	$\frac{1}{2.92}$	0.00	$1A^{"} \rightarrow 13A^{'}$	2.78	0.00
$\overline{2} \rightarrow 31$	2.94	0.18	$\overline{2} \rightarrow 31$	2.97	0.17	$1A^{"} \rightarrow 14A^{'}$	2.94	0.18	$1A" \rightarrow 18A"$	2.88	0.01
$\overline{2} \rightarrow 3\overline{2}$	3.01	0.00	$\overline{2} \rightarrow 3\overline{2}$	3.02	0.01	$1A^{"} \rightarrow 15A^{'}$	3.02	0.00	$1A^{"} \rightarrow 19A^{"}$	$\frac{1}{2.92}$	0.01
$2 \rightarrow 33$	3.06	0.01	$2 \rightarrow 33$	3.09	0.01	$1A^{"} \rightarrow 18A^{"}$	3.08	0.01	$1A" \rightarrow 14A'$	2.97	0.00
$\overline{2} \rightarrow 34$	3.09	0.02	$\overline{2} \rightarrow 34$	3.12	0.02	$1A^{"} \rightarrow 16A^{'}$	3.10	0.02	$1A" \rightarrow 15A'$	3.03	0.04
$2 \rightarrow 35$	3.13	0.01	$2 \rightarrow 35$	3.15	0.01	$1A^{"} \rightarrow 19A^{"}$	3.13	0.01	$1A^{"} \rightarrow 16A^{'}$	3.07	0.00
$\overline{2} \rightarrow 36$	3.13	0.00	$\overline{2} \rightarrow 36$	3.15	0.00	$1A^{"} \rightarrow 17A^{'}$	3.13	0.02	$1A" \rightarrow 17A'$	3.09	0.21
$\overline{2} \rightarrow 3\overline{7}$	3.19	0.08	$\overline{2} \rightarrow 37$	3.21	0.08	$1A" \rightarrow 20A"$	3.21	0.09	$1A^{"} \rightarrow 20A^{"}$	3.11	0.16
$\overline{2} \rightarrow 38$	3.28	0.00	$\overline{2} \rightarrow 38$	3.23	0.02	$1A^{"} \rightarrow 18A^{'}$	3.23	0.02	$1A^{"} \rightarrow 21A^{"}$	3.18	0.00
$\overline{2} \rightarrow 39$	3.30	0.03	$\overline{2} \rightarrow 39$	3.28	0.00	$1A^{"} \rightarrow 21A^{"}$	3.24	0.00	$1A" \rightarrow 22A"$	3.25	0.00
$2 \rightarrow 40$	3.35	0.03	$2 \rightarrow 40$	3.31	0.00	$1A" \rightarrow 19A'$	3.27	0.01	$1A" \rightarrow 18A'$	3.25	0.05
$2 \rightarrow 41$	3.39	0.01	$2 \rightarrow 41$	3.38	0.05	$1A" \rightarrow 22A"$	3.37	0.00	$1A" \rightarrow 19A'$	3.34	0.03
$2 \rightarrow 42$	3.41	0.00	$2 \rightarrow 42$	3.43	0.00	$1A" \rightarrow 20A'$	3.37	0.06	$1A" \rightarrow 23A"$	3.36	0.00
$2 \rightarrow 43$	3.53	0.00	$2 \rightarrow 43$	3.55	0.00	1A"→23A"	3.51	0.00	$1A" \rightarrow 20A'$	3.47	0.04
$2 \rightarrow 44$	3.61	0.11	$2 \rightarrow 44$	3.63	0.10	$1A" \rightarrow 24A"$	3.72	0.00	$1A" \rightarrow 24A"$	3.50	0.00
$2 \rightarrow 45$	3.65	0.03	$2 \rightarrow 45$	3.66	0.04	$1A" \rightarrow 25A"$	3.74	0.00	$1A" \rightarrow 25A"$	3.66	0.00

Table S11: Cytosine. CAM-B3LYP/aug-cc-pVDZ ESA transition energies (ΔE , eV) and oscillator strengths (f) from S₁/ 1A'/ $\pi\pi^*$, computed with the Tamm-Dancoff approximation (CIS), TDDFT in gas phase and TDDFT in non-equilibrium PCM (chloroform)

					ESA:	$\mathbf{S}_1 \; (\mathbf{1A'}) ightarrow \mathbf{S}_n$						
TDA	. (Turbo	omole)	TDDF	T (Tur	bomole)	TDDF	T (Dalte	on)	TDDFT PCM (Dalton)			
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	
$1 \rightarrow 2$	0.15	0.00	$1 \rightarrow 2$	0.31	0.00	$1A' \rightarrow 1A''$	0.31	0.00	$1A' \rightarrow 1A''$	0.50	0.00	
$1 \rightarrow 3$	0.47	0.05	$1 \rightarrow 3$	0.66	0.07	$1A' \rightarrow 2A''$	0.65	0.07	$1A' \rightarrow 2A'$	0.82	0.77	
$1 \rightarrow 4$	0.77	0.00	$1 \rightarrow 4$	0.93	0.79	$1A' \rightarrow 2A'$	0.93	0.78	$1A' \rightarrow 2A''$	0.84	0.09	
$1 \rightarrow 5$	0.90	0.76	$1 \rightarrow 5$	0.94	0.00	$1A' \rightarrow 3A''$	0.94	0.00	$1A' \rightarrow 3A''$	1.19	0.00	
$1 \rightarrow 6$	0.95	0.00	$1 \rightarrow 6$	1.13	0.01	$1A' \rightarrow 4A''$	1.13	0.00	$1A' \rightarrow 3A'$	1.28	0.40	
$1 \rightarrow 7$	0.98	0.02	$1 \rightarrow 7$	1.16	0.02	$1A' \rightarrow 5A''$	1.15	0.02	$1A' \rightarrow 4A''$	1.31	0.00	
$1 \rightarrow 8$	1.09	0.01	$1 \rightarrow 8$	1.27	0.01	$1A' \rightarrow bA''$	1.20	0.01	$1A' \rightarrow 5A''$	1.40	0.00	
$1 \rightarrow 9$	1.41	0.02	$1 \rightarrow 9$	1.55	0.18	$1A \rightarrow 3A$	1.55	0.17	$1A \rightarrow 0A$	1.09	0.02	
$1 \rightarrow 10$ $1 \rightarrow 11$	1.49	0.05	$1 \rightarrow 10$	1.59	0.02	$1A \rightarrow iA$	1.08	0.02	$1A \rightarrow A$	1.07	0.02	
$1 \rightarrow 11$ $1 \rightarrow 12$	1.50	0.37	$1 \rightarrow 11$ $1 \rightarrow 12$	1.70	0.27	$1A \rightarrow 4A$ $1A' \rightarrow 8A''$	1.09 1.76	0.28	$1A \rightarrow 4A$ $1A' \rightarrow 8A''$	1.74	0.04	
$1 \rightarrow 12$ $1 \rightarrow 12$	1.09	0.00	$1 \rightarrow 12$ 1 12	1.70	0.00	$1A \rightarrow 0A$ $1A' \rightarrow 5A'$	1.70	0.00	$1A \rightarrow 0A$ $1A' \rightarrow 5A'$	1.02 2.04	0.00	
$1 \rightarrow 13$ $1 \rightarrow 14$	1.70	0.00	$1 \rightarrow 13$	1.92	0.40	$1A \rightarrow 5A$ $1A' \rightarrow 0A''$	1.92 1.05	0.49	$1A \rightarrow 5A$ $1A' \rightarrow 0A''$	2.04 2.16	0.00	
$1 \rightarrow 14$ $1 \rightarrow 15$	1.02	0.49	$1 \rightarrow 14$ $1 \rightarrow 15$	2.08	0.00	$1A, \neg 5A, 1A, \neg 6A, 1A, 1A, 1A, 1A, 1A, 1A, 1A, 1A, 1A, 1$	2.95	0.00	$1\Lambda \rightarrow 5\Lambda$ $1\Lambda' \rightarrow 6\Lambda'$	$2.10 \\ 2.17$	0.00	
$1 \rightarrow 16$	1.92	0.07	$1 \rightarrow 16$	$\frac{2.00}{2.10}$	0.00	$1A' \rightarrow 10A''$	2.07	0.00	$1A' \rightarrow 10A''$	2.11	0.14	
$1 \rightarrow 17$	2.03	0.00	$1 \rightarrow 17$	2.10 2.10	0.01	$1\Delta' \rightarrow 7\Delta'$	$\frac{2.00}{2.20}$	0.28	$1A' \rightarrow 11A''$	2.22	0.11	
$1 \rightarrow 18$	$\frac{2.03}{2.08}$	0.22 0.02	$1 \rightarrow 18$	$\frac{2.13}{2.26}$	0.20	$1A' \rightarrow 11A''$	2.20 2.25	0.28	$1A' \rightarrow 7A'$	2.20 2.38	0.10	
$1 \rightarrow 19$	$\frac{2.00}{2.11}$	0.02	$1 \rightarrow 19$	$\frac{2.20}{2.29}$	0.04	$1A' \rightarrow 12A''$	$\frac{2.20}{2.27}$	0.03	$1A' \rightarrow 12A''$	$\frac{2.00}{2.44}$	0.49	
$1 \rightarrow 20$	2.11 2.25	0.43	$1 \rightarrow 20$	2.23 2.43	0.40	$1A' \rightarrow 8A'$	2.42	0.40	$1A' \rightarrow 13A''$	$\frac{2.44}{2.62}$	0.43	
$1 \rightarrow 21$	2.39	0.32	$1 \rightarrow 21$	2.57	0.21	$1A' \rightarrow 9A'$	2.55	0.21	$1A' \rightarrow 8A'$	2.78	0.08	
$1 \rightarrow 22$	2.55	0.02	$1 \rightarrow 22$	2.73	0.01	$1A' \rightarrow 13A''$	$\frac{2.00}{2.72}$	0.05	$1A' \rightarrow 9A'$	2.87	0.44	
$1 \rightarrow 23$	2.55	0.06	$1 \rightarrow 23$	2.73	0.05	$1A' \rightarrow 10A'$	2.72	0.01	$1A' \rightarrow 14A''$	2.90	0.02	
$1 \rightarrow 24$	2.60	0.00	$1 \rightarrow 24$	2.78	0.00	1A'→14A"	2.77	0.00	$1A' \rightarrow 10A'$	2.98	0.02	
$1 \rightarrow 25$	2.73	0.03	$1 \rightarrow 25$	2.91	0.02	$1A' \rightarrow 15A''$	2.90	0.02	$1A' \rightarrow 15A''$	3.02	0.00	
$1 \rightarrow 26$	2.77	0.17	$1 \rightarrow 26$	2.95	0.16	$1A' \rightarrow 11A'$	2.93	0.11	$1A' \rightarrow 11A'$	3.09	0.21	
$1 \rightarrow 27$	2.85	1.37	$1 \rightarrow 27$	3.00	1.16	$1A' \rightarrow 12A'$	3.00	1.22	1A'→16A"	3.20	0.01	
$1 \rightarrow 28$	2.91	0.06	$1 \rightarrow 28$	3.08	0.07	$1A' \rightarrow 13A'$	3.07	0.07	$1A' \rightarrow 12A'$	3.24	0.34	
$1 \rightarrow 29$	2.93	0.10	$1 \rightarrow 29$	3.11	0.06	1A'→16A"	3.11	0.06	1A'→17A"	3.25	0.02	
$1 \rightarrow 30$	3.07	0.00	$1 \rightarrow 30$	3.25	0.00	1A'→17A"	3.23	0.00	$1A' \rightarrow 13A'$	3.28	5.02	
$1 \rightarrow 31$	3.10	0.06	$1 \rightarrow 31$	3.28	0.16	$1A' \rightarrow 15A'$	3.33	3.55	1A'→18A"	3.38	0.00	
$1 \rightarrow 32$	3.16	3.28	$1 \rightarrow 32$	3.33	3.61	1A'→18A"	3.39	0.00	1A'→19A"	3.42	0.07	
$1 \rightarrow 33$	3.21	0.00	$1 \rightarrow 33$	3.40	0.00	1A'→16A'	3.41	0.13	1A'→14A'	3.47	1.45	
$1 \rightarrow 34$	3.25	0.09	$1 \rightarrow 34$	3.43	0.10	1A'→19A"	3.44	0.03	$1A' \rightarrow 15A'$	3.53	1.43	
$1 \rightarrow 35$	3.28	0.12	$1 \rightarrow 35$	3.46	0.11	$ 1A' \rightarrow 17A'$	3.44	0.09	$1A' \rightarrow 16A'$	3.57	5.44	
$1 \rightarrow 36$	3.28	0.04	$1 \rightarrow 36$	3.46	0.03	1A'→20A"	3.53	0.06	$1A' \rightarrow 17A'$	3.59	0.04	
$1 \rightarrow 37$	3.34	0.09	$1 \rightarrow 37$	3.52	0.05	$ 1A' \rightarrow 18A'$	3.54	6.33	$1A' \rightarrow 20A''$	3.61	0.08	
$1 \rightarrow 38$	3.43	0.02	$1 \rightarrow 38$	3.54	7.67	$ 1A' \rightarrow 21A''$	3.56	0.01	$ 1A' \rightarrow 21A''$	3.68	0.01	
$1 \rightarrow 39$	3.45	0.39	$1 \rightarrow 39$	3.59	0.02	$ 1A' \rightarrow 19A'$	3.58	0.06	$1A' \rightarrow 22A''$	3.75	0.00	
$1 \rightarrow 40$	3.51	4.11	$1 \rightarrow 40$	3.62	0.01	$ 1A' \rightarrow 22A''$	3.68	0.01	$1A' \rightarrow 18A'$	3.75	0.03	
$1 \rightarrow 41$	3.54	3.90	$1 \rightarrow 41$	3.69	0.45	$ 1A' \rightarrow 20A' $	3.68	0.42	$1A' \rightarrow 19A'$	3.84	0.13	
$1 \rightarrow 42$	3.56	0.01	$1 \rightarrow 42$	3.74	0.02	$ 1A' \rightarrow 23A'' $	3.82	0.00	$1A' \rightarrow 23A''$	3.86	0.00	
$1 \rightarrow 43$	3.68	0.00	$1 \rightarrow 43$	3.86	0.00	$ 1A' \rightarrow 24A'' $	4.03	0.05	$1A' \rightarrow 20A'$	3.97	0.36	
$1 \rightarrow 44$	3.76	0.24	$1 \rightarrow 44$	3.94	0.23	$1A' \rightarrow 25A''$	4.05	0.00	$1A' \rightarrow 24A''$	4.00	0.00	
$1 \rightarrow 45$	3.81	0.39	$ 1 \rightarrow 45$	3.97	0.27				$1A' \rightarrow 25A''$	4.10	0.02	

	OPA]]	$ESA(S_1)$			$ESA(S_2)$	
Transition	ω [eV]	$f \times 100$	Transition	ω [eV]	$f \times 100$	Transition	ω [eV]	$f \times 100$
$0 \rightarrow 1$	4.985	6.58	$1 \rightarrow 2$	0.469	0.00	$2 \rightarrow 3$	0.116	0.00
$0 \rightarrow 2$	5.454	0.26	$1 \rightarrow 3$	0.585	0.04	$2 \rightarrow 4$	0.480	0.00
$0 \rightarrow 3$	5.570	0.42	$1 \rightarrow 4$	0.950	1.21	$2 \rightarrow 5$	0.626	0.11
$0 \rightarrow 4$	5.934	17.14	$1 \rightarrow 5$	1.095	0.01	$2 \rightarrow 6$	0.645	0.26
$0 \rightarrow 5$	6.079	0.27	$1 \rightarrow 6$	1.114	0.02	$2 \rightarrow 7$	0.749	0.00
$0 \rightarrow 6$	6.099	0.42	$1 \rightarrow 1$	1.218	0.00	$2 \rightarrow 8$	0.933	0.65
$0 \rightarrow 7$	6 2 8 7	0.79	$1 \rightarrow 0$	1.402	0.00	$2 \rightarrow 9$ $2 \rightarrow 10$	1.075	0.00
$0 \rightarrow 0$	6 529	0.00	$1 \rightarrow 9$ $1 \rightarrow 10$	1.544	0.03	$2 \rightarrow 10$ $2 \rightarrow 11$	1 232	0.00
$0 \rightarrow 10$	6.563	49.47	$1 \rightarrow 11$	1 701	0.29	$2 \rightarrow 12$	1 400	0.10
$0 \rightarrow 11$	6.686	3.83	$1 \rightarrow 12$	1.870	0.01	$\tilde{2} \rightarrow \tilde{1}\tilde{3}$	1.474	0.01
$0 \rightarrow 12$	6.854	0.01	$1 \rightarrow \overline{13}$	1.943	0.65	$2 \rightarrow 14$	1.553	0.01
$0 \rightarrow 13$	6.928	10.57	$1 \rightarrow 14$	2.022	0.03	$2 \rightarrow 15$	1.555	0.15
$0 \rightarrow 14$	7.007	0.64	$1 \rightarrow 15$	2.024	0.01	$2 \rightarrow 16$	1.600	1.17
$0 \rightarrow 15$	7.009	2.54	$1 \rightarrow 16$	2.069	0.00	$2 \rightarrow 17$	1.637	0.00
$0 \rightarrow 16$	7.053	0.14	$1 \rightarrow 17$	2.106	0.57	$2 \rightarrow 18$	1.719	0.04
$0 \rightarrow 17$	7.091	12.07	$1 \rightarrow 18$	2.189	0.05	$2 \rightarrow 19$	1.784	0.01
$0 \rightarrow 18$ $0 \rightarrow 10$	7.173	0.02	$1 \rightarrow 19$ $1 \rightarrow 20$	2.203	0.53	$2 \rightarrow 20$	1.910	0.03
$0 \rightarrow 19$ $0 \rightarrow 20$	7 364	0.30	$1 \rightarrow 20$ $1 \rightarrow 21$	2.560	0.00	$2 \rightarrow 21$ $2 \rightarrow 22$	2.092	0.00
$0 \rightarrow 20$ $0 \rightarrow 21$	7 546	4 35	$1 \rightarrow 21$ $1 \rightarrow 22$	2.501	0.24	$2 \rightarrow 22$ $2 \rightarrow 23$	2.207	0.00
$0 \rightarrow \overline{22}$	7.661	0.70	$1 \rightarrow 2\overline{3}$	2.700	0.00	$2 \rightarrow 24$	2.250	0.00
$0 \rightarrow \overline{23}$	7.684	0.19	$1 \rightarrow \overline{24}$	2.721	0.01	$\overline{2} \rightarrow \overline{25}$	2.345	0.00
$0 \rightarrow \overline{24}$	7.706	1.53	$1 \rightarrow 25$	2.814	0.03	$\overline{2} \rightarrow \overline{2}\overline{6}$	2.411	0.00
$0 \rightarrow 25$	7.798	0.00	$1 \rightarrow 26$	2.880	1.32	$2 \rightarrow 27$	2.453	0.08
$0 \rightarrow 26$	7.865	3.41	$1 \rightarrow 27$	2.922	0.33	$2 \rightarrow 28$	2.572	0.08
$0 \rightarrow 27$	7.907	3.13	$1 \rightarrow 28$	3.041	0.06	$2 \rightarrow 29$	2.593	0.04
$0 \rightarrow 28$	8.026	0.11	$1 \rightarrow 29$	3.063	0.08	$2 \rightarrow 30$	2.752	0.00
$0 \rightarrow 29$	8.047	1.29	$1 \rightarrow 30$	3.221	0.00	$2 \rightarrow 31$	2.765	0.13
$0 \rightarrow 30$ $0 \rightarrow 21$	8.200	$0.14 \\ 1.07$	$1 \rightarrow 31$ $1 \rightarrow 22$	3.230	1.10	$2 \rightarrow 32$	2.110	0.06
$0 \rightarrow 31$ $0 \rightarrow 32$	8 220	1.07	$1 \rightarrow 32$ $1 \rightarrow 33$	3.240	0.00	$2 \rightarrow 33$	2.002	0.01
$0 \rightarrow 32$ $0 \rightarrow 33$	8 336	0.03	$1 \rightarrow 33$	3 390	0.00	$2 \rightarrow 34$ $2 \rightarrow 35$	2.921 2.928	0.02
$0 \rightarrow 34$	8.374	0.89	$1 \rightarrow 35$	3.397	0.05	$2 \rightarrow 36$	2.971	0.06
$0 \rightarrow 35$	8.382	0.09	$1 \rightarrow 36$	3.440	0.05	$\overline{2} \rightarrow 37$	$\bar{2}.989$	0.00
$0 \rightarrow 36$	8.425	0.40	$1 \rightarrow 37$	3.458	0.10	$2 \rightarrow 38$	3.044	0.00
$0 \rightarrow 37$	8.443	2.06	$1 \rightarrow 38$	3.513	0.00	$2 \rightarrow 39$	3.100	0.01
$0 \rightarrow 38$	8.498	0.00	$1 \rightarrow 39$	3.570	0.00	$2 \rightarrow 40$	3.196	0.00
$0 \rightarrow 39$	8.554	1.90	$1 \rightarrow 40$	3.665	0.02	$2 \rightarrow 41$	3.212	0.09
$0 \rightarrow 40$	8.650	0.45	$1 \rightarrow 41$	3.682	0.63	$2 \rightarrow 42$	3.282	0.00
$0 \rightarrow 41$	8.666	1.71	$1 \rightarrow 42$	3.752	13.18	$2 \rightarrow 43$	3.288	0.00
$0 \rightarrow 42$ $0 \rightarrow 42$	8.730	13.38	$1 \rightarrow 45$ $1 \rightarrow 44$	3.737	0.00	$2 \rightarrow 44$ $2 \rightarrow 45$	0.424 9.499	0.01
$0 \rightarrow 43$ $0 \rightarrow 44$	8 878	2.08	$1 \rightarrow 44$ $1 \rightarrow 45$	3 907	0.00	$2 \rightarrow 45$ $2 \rightarrow 46$	3 566	0.09
$0 \rightarrow 45$	8.892	$\frac{2.00}{2.17}$	$1 \rightarrow 46$	4.036	0.01	$2 \rightarrow 47$	3.590	0.00
$0 \rightarrow 46$	9.020	$\bar{0}.11$	$1 \rightarrow 47$	4.059	0.07	$\overline{2} \rightarrow \overline{48}$	3.656	0.05
$0 \rightarrow 47$	9.044	0.74	$1 \rightarrow \overline{48}$	4.125	0.00	$2 \rightarrow 49$	3.706	Ŏ.ŎŎ
$0 \rightarrow 48$	9.110	0.33	$1 \rightarrow 49$	4.175	0.04	$2 \rightarrow 50$	3.709	4.54
$0 \rightarrow 49$	9.160	1.52	$1 \rightarrow 50$	4.178	0.01	$2 \rightarrow 51$	3.738	0.00
$0 \rightarrow 50$	9.163	0.67	$1 \rightarrow 51$	4.208	0.39	$ 2 \rightarrow 52$	3.803	0.00
$0 \rightarrow 51$	9.192	5.08	$1 \rightarrow 52$	4.272	0.08			
$U \rightarrow 52$	9 257	0.12	1					

Table S12: Cytosine. CCSD/aug-cc-pVDZ OPA and ESA transition energies (ω) and oscillator strengths (f).

	OPA			$ESA(S_1)$			$ESA(S_2)$	
Transition	$\omega [\mathrm{eV}]$	$f \times 100$	Transition	$\omega [\mathrm{eV}]$	$f \times 100$	Transition	$\omega [\mathrm{eV}]$	$f \times 100$
$0 \rightarrow 1$	4.756	5.09	$1 \rightarrow 2$	0.446	0.00	$2 \rightarrow 3$	0.269	0.00
$0 \rightarrow 2$	5.202	0.21	$1 \rightarrow 3$	0.715	0.04	$2 \rightarrow 4$	0.392	0.71
$0 \rightarrow 3$	5.472	0.40	$1 \rightarrow 4$	0.838	0.00	$2 \rightarrow 5$	0.436	0.00
$0 \rightarrow 4$	5.594	0.05	$1 \rightarrow 5$	0.882	0.85	$2 \rightarrow 6$	0.771	0.01
$0 \rightarrow 5$	5.638	12.38	$1 \rightarrow 6$	1.217	0.03	$2 \rightarrow 7$	0.834	0.00
$0 \rightarrow 6$	5.973	0.58	$1 \rightarrow 7$	1.280	0.00	$2 \rightarrow 8$	0.855	0.19
$0 \rightarrow 7$	6.037	0.55	$1 \rightarrow 8$	1.301	0.00	$2 \rightarrow 9$	1.172	0.01
$0 \rightarrow 8$	6.057	0.00	$1 \rightarrow 9$	1.618	0.11	$2 \rightarrow 10$	1.209	0.00
$0 \rightarrow 9$	6.374	30.50	$1 \rightarrow 10$	1.655	0.02	$2 \rightarrow 11$	1.224	0.10
$0 \rightarrow 10$	6.411	0.68	$1 \rightarrow 11$	1.670	0.27	$2 \rightarrow 12$	1.465	0.01
$0 \rightarrow 11$	6.427	7.27	$1 \rightarrow 12$	1.911	0.00	$2 \rightarrow 13$	1.493	0.02
$0 \rightarrow 12$	6.667	0.03	$1 \rightarrow 13$	1.939	0.59	$2 \rightarrow 14$	1.550	0.45
$0 \rightarrow 13$	6.095	14.40	$1 \rightarrow 14$	1.990	0.00	$2 \rightarrow 15$	1.084	0.04
$0 \rightarrow 14$ $0 \rightarrow 15$	0.732	16.24	$1 \rightarrow 10$ $1 \rightarrow 16$	2.030	0.15	$2 \rightarrow 10$	1.062	0.00
$0 \rightarrow 15$ $0 \rightarrow 16$	6.885	0.73	$1 \rightarrow 10$ $1 \rightarrow 17$	2.120	0.02	$2 \rightarrow 17$ $2 \rightarrow 18$	1.743 1.775	0.00
$0 \rightarrow 10$ $0 \rightarrow 17$	6.046	2.57	$1 \rightarrow 17$ $1 \rightarrow 18$	2.109	0.10	$2 \rightarrow 10$	1.838	0.01
$0 \rightarrow 17$ $0 \rightarrow 18$	6 977	1 30	$1 \rightarrow 10$	2.221 2.281	0.03	2 - 19	1.879	0.02
$0 \rightarrow 10$	7.040	0.00	$1 \rightarrow 20$	2.204	0.05	$2 \rightarrow 21$	2,009	0.00
$0 \rightarrow 20$	7.081	0.24	$1 \rightarrow \overline{21}$	2.455	0.14	$\tilde{2} \rightarrow \tilde{2}\tilde{2}$	2.167	0.00
$0 \rightarrow \overline{21}$	7.212	3.85	$1 \rightarrow \overline{22}$	2.613	0.03	$\overline{2} \rightarrow \overline{2}\overline{3}$	2,301	0.00
$0 \rightarrow \overline{2}\overline{2}$	7.369	2.41	$1 \rightarrow \overline{23}$	2.747	0.05	$\overline{2} \rightarrow \overline{24}$	2.360	0.00
$0 \rightarrow 23$	7.503	0.72	$1 \rightarrow 24$	2.806	0.01	$2 \rightarrow 25$	2.437	0.00
$0 \rightarrow 24$	7.563	0.11	$1 \rightarrow 25$	2.883	0.03	$2 \rightarrow 26$	2.465	0.07
$0 \rightarrow 25$	7.639	0.02	$1 \rightarrow 26$	2.911	0.07	$2 \rightarrow 27$	2.538	0.02
$0 \rightarrow 26$	7.667	1.52	$1 \rightarrow 27$	2.984	0.84	$2 \rightarrow 28$	2.556	0.03
$0 \rightarrow 27$	7.740	4.46	$1 \rightarrow 28$	3.002	0.14	$2 \rightarrow 29$	2.618	0.08
$0 \rightarrow 28$	7.759	1.45	$1 \rightarrow 29$	3.064	0.05	$2 \rightarrow 30$	2.703	0.28
$0 \rightarrow 29$	7.820	0.07	$1 \rightarrow 30$	3.149	0.02	$2 \rightarrow 31$	2.871	0.00
$0 \rightarrow 30$	7.906	0.06	$1 \rightarrow 31$	3.317	0.00	$2 \rightarrow 32$	2.874	0.01
$0 \rightarrow 31$	8.073	0.15	$1 \rightarrow 32$	3.320	2.69	$2 \rightarrow 33$	2.915	0.00
$0 \rightarrow 32$	8.076	0.36	$1 \rightarrow 33$	3.360	0.77	$2 \rightarrow 34$	2.979	0.01
$0 \rightarrow 33$	8.117	3.75	$1 \rightarrow 34$	3.425	0.49	$2 \rightarrow 35$	2.990	0.01
$0 \rightarrow 34$	0.101	0.09	$1 \rightarrow 30$ $1 \rightarrow 26$	3.430	0.00	$2 \rightarrow 30$	3.028	0.02
$0 \rightarrow 30$	0.195	0.04	$1 \rightarrow 30$ $1 \rightarrow 27$	3.474 2.401	0.07	$2 \rightarrow 31$	2.045	0.00
$0 \rightarrow 30$	0.230	0.00	$1 \rightarrow 37$ $1 \rightarrow 29$	2 501	6.58	$2 \rightarrow 30$	2 150	0.02
$0 \rightarrow 37$ $0 \rightarrow 38$	8 258	15.48	$1 \rightarrow 30$	3.605	0.58	$2 \rightarrow 39$ $2 \rightarrow 40$	3 101	0.05
$0 \rightarrow 30$	8 361	0.11	$1 \rightarrow 40$	3 637	0.02	$2 \rightarrow 40$	3 1 9 6	0.02
$0 \rightarrow 40$	8.393	0.49	$1 \rightarrow 41$	3.642	0.01	$1 \tilde{2} \rightarrow \tilde{4} \\ 2 \tilde{2} \tilde{4} \tilde{2} \tilde{4} \tilde{2} \tilde{4} \tilde{4} $	3.317	0.00
$0 \rightarrow 41$	8.398	0.00	$1 \rightarrow 42$	3.763	0.01	$2 \rightarrow 43$	3.390	0.00
$0 \rightarrow 42$	8.520	0.39	$1 \rightarrow 43$	3.836	0.00	$\tilde{2} \rightarrow 44$	3.480	0.05
$0 \rightarrow 4\overline{3}$	8.592	0.12	$1 \rightarrow 44$	3.926	0.30	$\overline{2} \rightarrow 45$	3.505	0.03
$0 \rightarrow 44$	8.682	2.37	$1 \rightarrow 45$	3.951	0.23	1 = . 10	5.500	2100
$0 \rightarrow 4\overline{5}$	8.707	0.64	1 - 7 10	0.001	0.20			

Table S13: Cytosine. CC3/aug-cc-pVDZ ESA transition energies (ω) and oscillator strengths (f).

SS4.3 Adenine

Table S14: Adenine. CAM-B3LYP/aug-cc-pVDZ OPA excitation energies (ΔE , eV) and oscillator strengths (f), computed with the Tamm-Dancoff approximation (CIS), TDDFT in gas phase and TDDFT with non-equilibrium PCM (chloroform). First IP is 8.38 eV. Note the inversion of the state ordering in TDA, and the relatively large intensity of L_b .

						PA						
TDA	(Turbo	omole)	TDDF1	(Turbo	omole)	TDD	FT (Da	lton)	TDDFT	PCM (Dalton)	
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	
$0 \rightarrow 1$	5.37	0.07	$0 \rightarrow 1 L_a$	5.34	27.76	1A'La	5.34	27.75	$1A'L_a$	5.25	37.85	
$0\rightarrow 2$	5.54	25.82	$0 \rightarrow 2 n\pi^*$	5.35	0.06	$1 \text{A}" n \pi^*$	5.35	0.06	$2A'L_b$	5.45	2.79	
$0 \rightarrow 3$	5.57	9.56	$0 \rightarrow 3 L_b$	5.49	1.31	$2A'L_b$	5.49	1.32	$1 \text{A}" n \pi^*$	5.48	0.07	
$0 \rightarrow 4$	5.64	0.96	$0 \rightarrow 4$	5.64	0.96	2A"	5.63	0.96	2A"	5.75	1.06	
$0 \rightarrow 5$	5.95	0.01	$0 \rightarrow 5$	5.93	0.09	3A"	5.93	0.05	3A"	6.06	0.25	
$0 \rightarrow 6$	5.98	0.37	$0 \rightarrow 6$	5.96	0.23	4A"	5.95	0.28	4A"	6.26	0.08	
$0 \rightarrow \overline{7}$	6.31	0.12	$0 \rightarrow 7$	6.28	0.10	5A"	6.28	0.10	5A"	6.42	0.13	
$0 \rightarrow 8$	6.47	0.11	$0 \rightarrow 8$	6.47	0.10	6A"	6.45	0.09	3A'	6.46	58.79	
$0 \rightarrow 9$	6 65	0	$0 \rightarrow 9$	6 56	41.68	3A,	6.56	41.55	6A"	6 4 9	0.08	
$0 \rightarrow 10$	6.72	2057	$0 \rightarrow 10$	6.65	0.00	74"	6.64	0	4A',	6.72	0.00	
$0 \rightarrow 11$	6 79	8 21	$0 \rightarrow 11$	6.72	1 99		6.72	2 09	74"	6.84	0.14	
$0 \rightarrow 12$	6.82	25.87	$0 \rightarrow 12$	6 78	5.07	5Δ	6.78	4.03	5Δ	6.00	24.30	
$0 \rightarrow 12$	6.86	0.18	$0 \rightarrow 12$	6.86	0.17	84"	6.84	0.16	64,	6.00	0.85	
$0 \rightarrow 13$	6.03	0.10	$0 \rightarrow 13$	6.02	0.53	04,	6.02	0.10	84"	7 00	1 74	
0 - 14 - 15	6.08	2.07		6.04	0.00	104"	6.03	1 30	01,	7.00	0.27	
$0 \rightarrow 15$ 0 \ 16	7.00	2.07	$0 \rightarrow 15$	7.00	10.98	61,	7.00	10.37	$\frac{3\Lambda}{7\Lambda}$,	7.02	0.27	
$0 \rightarrow 10$ $0 \rightarrow 17$	7.09	0.40	$0 \rightarrow 10$ $0 \rightarrow 17$	7.00 7.10	0.11	114"	7.00 7.10	0.14	104"	7.10	0.54	
0 - 18	7.15	0.25	$0 \rightarrow 17$	$7.10 \\ 7.11$	2.00	$\frac{11}{7}$	$7.10 \\ 7.11$	0.14	11 A "	7.15	0.25	
$0 \rightarrow 10$	7.10	2 20	$0 \rightarrow 10$	7.11 7.14	2.09	124	7.11 7 19	2.12	124	7.24	0.20	
$0 \rightarrow 19$	7.25	16 41	$0 \rightarrow 19$	7.14 7 10	0.15		7.12	5.08	12A	7.24	10.22	
$0 \rightarrow 20$	7.20	10.41	$0 \rightarrow 20$	7.19	0.00	0A 12A"	7.10	0.04	OA,	7.50	19.30	
$0 \rightarrow 21$	7.30	0.27	$0 \rightarrow 21$	7.30	0.25	15A	7.30	0.20	9A 19A"	7.50	5.45	
$0 \rightarrow 22$	7.42	1.05	$0 \rightarrow 22$	7.41	10.94	9A	7.39	1.01	15A 10A	7.00	0.17	
$0 \rightarrow 23$	7.70	20.74	$0 \rightarrow 23$	(.48)	10.00	10A	7.70	10.07	10A	7.04	1.00	
$0 \rightarrow 24$	1.10	0.40	$0 \rightarrow 24$	1.13	4.09		(.(2	4.13	11A 14A"	1.80	10.30	
$0 \rightarrow 25$	1.11	3.97	$0 \rightarrow 25$	1.10	0.37	14A	$\frac{1.14}{1.14}$	0.35	14A	1.80	0.65	
$0\rightarrow 26$	7.80	0.03	$0 \rightarrow 26$	7.79	0.03	15A″	7.78	0.04	15A″	7.87	0.28	
$0\rightarrow 27$	7.83	2.40	$0 \rightarrow 27$	7.82	2.63	12A′	7.82	2.32	12A'	7.89	2.31	
$0\rightarrow 28$	7.87	0.06	$0 \rightarrow 28$	7.84	0.20	13A	7.83	0.42	16A″	8.00	0.04	
$0\rightarrow 29$	7.89	0.12	$0 \rightarrow 29$	7.86	0.06	16A″	7.85	0.08	13A	8.02	8.53	
$0 \rightarrow 30$	7.89	3.88	$0 \rightarrow 30$	7.88	0.11	17A″	7.88	0.09	17A″	8.05	0.13	
$0 \rightarrow 31$	7.94	0.05	$0 \rightarrow 31$	7.92	2.04	14A′	7.92	0.91	14A′	8.08	1.51	
$0 \rightarrow 32$	7.97	0.08	$0 \rightarrow 32$	7.94	2.94	15A'	7.94	4.05	18A"	8.10	0.10	
$0 \rightarrow 33$	8.00	0.18	$0 \rightarrow 33$	7.97	0.08	18A"	7.96	0.06	19A"	8.13	0.29	
$0 \rightarrow 34$	8.02	4.23	$ 0 \rightarrow 34$	8.00	0.16	19A"	7.98	0.10	15A'	8.13	4.73	
$0 \rightarrow 35$	8.07	0.17	$0 \rightarrow 35$	8.07	0.15	20A"	8.06	0.18	16A'	8.17	1.44	
$0 \rightarrow 36$	8.12	0.35	$0 \rightarrow 36$	8.11	8.69	21A"	8.10	0.37	20A"	8.19	0.06	
$0 \rightarrow 37$	8.15	7.49	$ 0 \rightarrow 37$	8.12	0.35	16A'	8.11	7.91	17A'	8.21	1.92	
$0 \rightarrow 38$	8.17	4.10	$ 0 \rightarrow 38$	8.15	0.40	17A'	8.14	1.03	21A"	8.30	0.04	
$0 \rightarrow 39$	8.23	0.01	$0 \rightarrow 39$	8.20	1.14	18A'	8.20	1.28	22A"	8.33	0.57	
$0 \rightarrow 40$	8.24	0.52	$ 0 \rightarrow 40$	8.23	0.01	22A"	8.22	0	18A'	8.35	5.66	
$0 \rightarrow 41$	8.30	3.21	$ 0 \rightarrow 41$	8.30	2.93	19A'	8.28	2.75	23A"	8.39	0.03	
$0 \rightarrow 42$	8.32	0.23	$0 \rightarrow 42$	8.32	0.17	23A"	8.30	0.34	19A'	8.40	2.11	
$0 \rightarrow 43$	8.36	0.28	$0 \rightarrow 43$	8.35	0.31	24A"	8.34	0.23	24A"	8.45	0.73	
$0 \rightarrow 44$	8.39	0.84	$0 \rightarrow 44$	8.37	5.79	20A'	8.36	0.83	20A'	8.52	1.05	
$0 \rightarrow 45$	8.45	18.04	$0 \rightarrow 45$	8.39	3.58	25A"	8.45	0.63	25A"	8.55	0.31	

Table S15: Adenine. CAM-B3LYP/aug-cc-pVDZ ESA transition energies $(\Delta E, eV)$ and oscillator strengths (f) from $L_a/1A'$, computed in the Tamm-Dancoff approximation (CIS), with TDDFT in gas phase, and and TDDFT with non-equilibrium PCM (chloroform).

TDA (TDA (Turbomole) - S rans. $\Delta E f \times 1$		$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1 TDDFT (Dalton) - 1A'			TDDFT PCM (Dalton) 1A'			
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$
$2 \rightarrow 3$	0.03	0.01	$1 \rightarrow 2$	0.01	0.00	$1A' \rightarrow 1A''$	0.01	0.00	$1A' \rightarrow 2A'$	0.21	0.11
$2 \rightarrow 4$	0.10	0.00	$1 \rightarrow 3$	0.15	0.05	$1A' \rightarrow 2A'$	0.15	0.05	$1A' \rightarrow 1A''$	0.24	0.00
$2 \rightarrow 5$	0.41	0.11	$1 \rightarrow 4$	0.30	0.01	$1A' \rightarrow 2A''$	0.29	0.01	$1A' \rightarrow 2A''$	0.50	0.07
$2 \rightarrow 6$	0.44	0.07	$1 \rightarrow 5$	0.59	0.05	$1A' \rightarrow 3A''$	0.59	0.09	$1A' \rightarrow 3A''$	0.81	0.00
$2 \rightarrow 7$	0.77	0.00	$1 \rightarrow 6$	0.62	0.30	$1A' \rightarrow 4A''$	0.61	0.25	$1A' \rightarrow 4A''$	1.02	0.49
$2 \rightarrow 8$	0.93	0.30	$1 \rightarrow 7$	0.94	0.00	$1A' \rightarrow 5A''$	0.94	0.00	$1A' \rightarrow 5A''$	1.17	0.01
$2 \rightarrow 9$	1.11	0.01	$1 \rightarrow 8$	1.13	0.24	1A'→6A"	1.11	0.25	$1A' \rightarrow 3A'$	1.21	0.07
$2 \rightarrow 10$	1.18	3.02	$1 \rightarrow 9$	1.21	0.34	$1A' \rightarrow 3A'$	1.21	0.34	1A'→6A"	1.24	0.42
$2 \rightarrow 11$	1.25	0.26	$1 \rightarrow 10$	1.31	0.04	$1A' \rightarrow 7A''$	1.30	0.03	$1A' \rightarrow 4A'$	1.47	8.47
$2 \rightarrow 12$	1.28	2.32	$1 \rightarrow 11$	1.37	6.70	$1A' \rightarrow 4A'$	1.37	6.50	1A'→7A"	1.59	0.02
$2 \rightarrow 13$	1.32	0.01	$1 \rightarrow 12$	1.44	0.42	$1A' \rightarrow 5A'$	1.43	0.52	$1A' \rightarrow 5A'$	1.65	2.87
$2 \rightarrow 14$	1.39	0.01	$1 \rightarrow 13$	1.52	0.02	1A'→8A"	1.49	0.02	1A'→6A'	1.74	1.18
$2 \rightarrow 15$	1.44	0.01	$1 \rightarrow 14$	1.58	0.00	$1A' \rightarrow 9A''$	1.58	0.00	1A'→8A"	1.76	0.00
$2 \rightarrow 16$	1.54	4.60	$1 \rightarrow 15$	1.59	0.01	1A'→10A"	1.59	0.01	1A'→9A"	1.77	0.02
$2 \rightarrow 17$	1.59	0.10	$1 \rightarrow 16$	1.66	2.79	$1A' \rightarrow 6A'$	1.66	2.56	$1A' \rightarrow 7A'$	1.85	1.08
$2 \rightarrow 18$	1.61	0.07	$1 \rightarrow 17$	1.76	0.00	$1A' \rightarrow 11A''$	1.76	0.01	1A'→10A"	1.88	0.00
$2 \rightarrow 19$	1.69	0.99	$1 \rightarrow 18$	1.77	1.04	$1A' \rightarrow 7A'$	1.77	0.98	1A'→11A"	1.92	0.07
$2 \rightarrow 20$	1.71	0.00	$1 \rightarrow 19$	1.79	0.14	$1A' \rightarrow 12A''$	1.78	0.12	$1A' \rightarrow 12A''$	1.99	0.00
$2 \rightarrow 21$	1.82	0.04	$1 \rightarrow 20$	1.85	0.15	$1A' \rightarrow 8A'$	1.83	0.13	$1A' \rightarrow 8A'$	2.10	1.67
$2 \rightarrow 22$	1.88	0.19	$1 \rightarrow 21$	2.02	0.00	$1A' \rightarrow 13A''$	2.01	0.00	$1A' \rightarrow 9A'$	2.32	0.17
$2 \rightarrow 23$	2.16	0.17	$1 \rightarrow 22$	2.07	0.13	$1A' \rightarrow 9A'$	2.05	0.10	1A'→13A"	2.33	0.00
$2 \rightarrow 24$	2.21	0.16	$1 \rightarrow 23$	2.14	0.69	$1A' \rightarrow 10A'$	2.13	0.62	$1A' \rightarrow 10A'$	2.39	0.05
$2 \rightarrow 25$	2.23	0.07	$1 \rightarrow 24$	2.39	0.19	$1A' \rightarrow 11A'$	2.37	0.17	$1A' \rightarrow 11A'$	2.55	0.06
$2 \rightarrow 26$	2.25	0.46	$1 \rightarrow 25$	2.41	0.21	$1A' \rightarrow 14A''$	2.40	0.15	1A'→14A"	2.60	0.01
$2 \rightarrow 27$	2.29	0.17	$1 \rightarrow 26$	2.45	0.53	$1A' \rightarrow 15A''$	2.44	0.61	$1A' \rightarrow 15A''$	2.63	0.81
$2 \rightarrow 28$	2.32	0.00	$1 \rightarrow 27$	2.48	0.01	$1A' \rightarrow 12A'$	2.48	0.02	$1A' \rightarrow 12A'$	2.64	0.78
$2 \rightarrow 29$	2.34	0.00	$1 \rightarrow 28$	2.50	0.00	$1A' \rightarrow 13A'$	2.49	0.00	1A'→16A"	2.75	0.00
$2 \rightarrow 30$	2.35	0.02	$1 \rightarrow 29$	2.52	0.00	1A'→16A"	2.51	0.00	$1A' \rightarrow 13A'$	2.77	0.15
$2 \rightarrow 31$	2.40	0.05	$1 \rightarrow 30$	2.54	0.03	1A'→17A"	2.54	0.00	1A'→17A"	2.81	0.00
$2 \rightarrow 32$	2.43	0.03	$1 \rightarrow 31$	2.58	0.38	$1A' \rightarrow 14A'$	2.57	0.16	$1A' \rightarrow 14A'$	2.83	0.06
$2 \rightarrow 33$	2.46	0.04	$1 \rightarrow 32$	2.60	0.61	$1A' \rightarrow 15A'$	2.60	0.86	1A'→18A"	2.86	0.01
$2 \rightarrow 34$	2.48	1.23	$1 \rightarrow 33$	2.62	0.11	1A'→18A"	2.62	0.11	1A'→19A"	2.88	0.03
$2 \rightarrow 35$	2.53	0.00	$1 \rightarrow 34$	2.66	0.00	1A'→19A"	2.64	0.01	$1A' \rightarrow 15A'$	2.89	0.65
$2 \rightarrow 36$	2.58	0.16	$1 \rightarrow 35$	2.72	0.01	1A'→20A"	2.72	0.01	1A'→16A'	2.92	0.64
$2 \rightarrow 37$	2.61	0.60	$1 \rightarrow 36$	2.77	0.75	$1A' \rightarrow 21A''$	2.76	0.15	$1A' \rightarrow 20A''$	2.95	0.00
$2 \rightarrow 38$	2.63	0.80	$1 \rightarrow 37$	2.78	0.17	$1A' \rightarrow 16A'$	2.77	0.67	$1A' \rightarrow 17A'$	2.96	0.50
$2 \rightarrow 39$	2.69	0.04	$1 \rightarrow 38$	2.80	0.19	$1A' \rightarrow 17A'$	2.79	0.20	$1A' \rightarrow 21A''$	3.05	0.22
$2 \rightarrow 40$	2.70	0.91	$1 \rightarrow 39$	2.86	0.57	$1A' \rightarrow 18A'$	2.85	0.61	$1A' \rightarrow 22A''$	3.08	0.14
$2 \rightarrow 41$	2.76	0.07	$1 \rightarrow 40$	2.89	0.06	$1A' \rightarrow 22A''$	2.88	0.05	$1A' \rightarrow 18A'$	3.10	0.13
$2 \rightarrow 42$	2.78	0.17	$1 \rightarrow 41$	2.95	0.07	$1A' \rightarrow 19A'$	2.94	0.09	1A'→23A"	3.14	0.01
$2 \rightarrow 43$	2.82	0.11	$1 \rightarrow 42$	2.97	0.12	1A'→23A"	2.96	0.17	$1A' \rightarrow 19A'$	3.16	0.01
$2 \rightarrow 44$	2.85	0.14	$1 \rightarrow 43$	3.01	0.13	$1A' \rightarrow 24A''$	3.00	0.07	$1A' \rightarrow 24A''$	3.20	0.00
$2 \rightarrow 45$	2.90	0.82	$1 \rightarrow 44$	3.03	0.12	$1A' \rightarrow 20A'$	3.02	0.11	$1A' \rightarrow 20A'$	3.27	0.11

Table S16: Adenine. CAM-B3LYP/aug-cc-pVDZ ESA transition energies $(\Delta E, \text{eV})$ and oscillator strengths (f) from $n\pi^*/1A''$, computed in the Tamm-Dancoff approximation (CIS), at TDDFT level in gas phase, and TDDFT with non-equilibrium PCM (chloroform)

TDA (Turbom	ole) - S_1	TDDFT	(Turbo	mole) - S_2	TDDFT	(Dalton)	- 1A"	TDDFT PC	M (Dalt	on) - 1A"
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$
$1 \rightarrow 2$	0.17	0.00	$2 \rightarrow 3$	0.14	0.00	$1A" \rightarrow 2A'$	0.14	0.00	$1A" \rightarrow 2A"$	0.26	0.00
$1 \rightarrow 3$	0.20	0.00	$2 \rightarrow 4$	0.29	0.00	$1A" \rightarrow 2A"$	0.29	0.00	$1A" \rightarrow 3A"$	0.58	0.30
$1 \rightarrow 4$	0.27	0.00	$2 \rightarrow 5$	0.58	0.18	$1A^{"}\rightarrow 3A^{"}$	0.58	0.15	$1A" \rightarrow 4A"$	0.78	0.00
$1 \rightarrow 5$	0.58	0.08	$2 \rightarrow 6$	0.62	0.05	$1A^{"}\rightarrow 4A^{"}$	0.61	0.08	$1A" \rightarrow 5A"$	0.93	1.23
$1 \rightarrow 6$	0.61	0.15	$2 \rightarrow 7$	0.93	0.78	$1A" \rightarrow 5A"$	0.93	0.77	$1A" \rightarrow 3A'$	0.97	0.00
$1 \rightarrow 7$	0.94	0.81	$2 \rightarrow 8$	1.12	0.00	$1A" \rightarrow 6A"$	1.10	0.00	$1A" \rightarrow 6A"$	1.00	0.02
$1 \rightarrow 8$	1.10	0.00	$2 \rightarrow 9$	1.21	0.00	$1A^{"}\rightarrow 3A^{'}$	1.21	0.00	$1A" \rightarrow 4A'$	1.24	0.00
$1 \rightarrow 9$	1.28	0.00	$2 \rightarrow 10$	1.30	0.00	$1A" \rightarrow 7A"$	1.29	0.00	$1A" \rightarrow 7A"$	1.35	0.00
$1 \rightarrow 10$	1.35	0.00	$2 \rightarrow 11$	1.37	0.00	$1A^{"} \rightarrow 4A^{'}$	1.37	0.00	$1A" \rightarrow 5A'$	1.41	0.05
$1 \rightarrow 11$	1.42	0.04	$2 \rightarrow 12$	1.44	0.04	$1A" \rightarrow 5A'$	1.43	0.04	$1A" \rightarrow 6A'$	1.50	0.09
$1 \rightarrow 12$	1.45	0.00	$2 \rightarrow 13$	1.51	0.01	$1A" \rightarrow 8A"$	1.49	0.01	$1A" \rightarrow 8A"$	1.52	1.21
$1 \rightarrow 13$	1.49	0.01	$2 \rightarrow 14$	1.57	1.09	$1A" \rightarrow 9A"$	1.57	0.59	$1A" \rightarrow 9A"$	1.54	0.69
$1 \rightarrow 14$	1.56	0.03	$2 \rightarrow 15$	1.59	0.78	$1A^{"} \rightarrow 10A^{"}$	1.58	1.14	$1A" \rightarrow 7A'$	1.62	0.08
$1 \rightarrow 15$	1.61	1.64	$2 \rightarrow 16$	1.65	0.01	$1A" \rightarrow 6A'$	1.65	0.01	$1A" \rightarrow 10A"$	1.64	0.02
$1 \rightarrow 16$	1.71	0.00	$2 \rightarrow 17$	1.75	1.30	$1A^{"} \rightarrow 11A^{"}$	1.75	1.08	$1A^{"} \rightarrow 11A^{"}$	1.69	0.03
$1 \rightarrow 17$	1.76	0.32	$2 \rightarrow 18$	1.76	0.00	$1A" \rightarrow 7A'$	1.76	0.00	$1A" \rightarrow 12A"$	1.76	1.88
$1 \rightarrow 18$	1.78	1.31	$2 \rightarrow 19$	1.79	0.17	$1A^{"} \rightarrow 12A^{"}$	1.77	0.32	$1A^{"} \rightarrow 8A^{'}$	1.86	0.04
$1 \rightarrow 19$	1.86	0.07	$\overline{2} \rightarrow \overline{20}$	1.84	0.46	$1A^{"} \rightarrow 8A^{'}$	1.83	0.48	$1A" \rightarrow 9A'$	2.08	0.29
$1 \rightarrow 20$	1.88	0.45	$\overline{2} \rightarrow \overline{21}$	2.01	0.00	$1A^{"} \rightarrow 13A^{"}$	2.00	0.00	$1A^{"} \rightarrow 13A^{"}$	$\frac{1}{2}.09$	0.01
$1 \rightarrow 21$	1.99	0.00	$\overline{2} \rightarrow \overline{22}$	2.06	0.15	$1A^{"} \rightarrow 9A^{"}$	$\frac{1}{2}.04$	0.14	$1A^{"} \rightarrow 10A^{'}$	$\frac{1}{2}.15$	0.16
$1 \rightarrow 22$	2.05	0.09	$\overline{2} \rightarrow \overline{23}$	$\frac{1}{2}$	0.01	$1A^{"} \rightarrow 10A^{'}$	2.13	0.01	$1A^{"} \rightarrow 11A^{'}$	2.31	0.00
$1 \rightarrow 23$	2.33	0.02	$\overline{2} \rightarrow \overline{24}$	2.38	0.00	$1A^{"} \rightarrow 11A^{"}$	2.37	0.00	$1A^{"} \rightarrow 14A^{"}$	2.37	0.01
$1 \rightarrow 24$	2.38	0.03	$2 \rightarrow 25$	$\frac{1}{2}$ 40	0.03	$1A" \rightarrow 14A"$	$\frac{1}{2}$ 39	0.03	$1A" \rightarrow 15A"$	$\frac{1}{2}$ 39	0.01
$1 \rightarrow 25$	$\frac{2.00}{2.40}$	0.00	$2 \rightarrow 26$	$\frac{2.10}{2.45}$	0.01	$1A^{"} \rightarrow 15A^{"}$	$\frac{2.00}{2.43}$	0.01	$1A^{"} \rightarrow 12A^{'}$	$\frac{2.00}{2.41}$	0.01
$1 \rightarrow 26$	2.10 2.42	0.00	$2 \rightarrow 27$	$2.10 \\ 2.47$	0.00	$1A^{,} \rightarrow 12A^{,}$	2.10	0.01	$1A^{"} \rightarrow 16A^{"}$	$\frac{2.11}{2.52}$	0.01
$1 \rightarrow 27$	2.42	0.01	$2 \rightarrow 28$	2.41 2.50	0.00	$1\Delta^{,1} \rightarrow 13\Delta^{,1}$	2.41	0.01	$1\Delta^{,1} \rightarrow 13\Delta^{,1}$	2.54	0.01
$1 \rightarrow 21$ $1 \rightarrow 28$	2.40 2.50	0.00	$2 \rightarrow 20$	$\frac{2.50}{2.52}$	0.01	$1A^{-10A}$	2.40 2.50	0.01	$1A^{"} \rightarrow 17A^{"}$	$2.54 \\ 2.57$	7 80
$1 \rightarrow 20$ $1 \rightarrow 20$	$2.00 \\ 2.52$	7 59	$2 \rightarrow 29$ $2 \rightarrow 30$	2.52 2.54	7.65	$1A^{-10A}$	$\frac{2.50}{2.54}$	7.83	$1\Delta^{"} \rightarrow 1/\Delta^{"}$	2.57	0.12
$1 \rightarrow 20$ $1 \rightarrow 30$	2.02 2.52	0.00	$2 \rightarrow 30$ $2 \rightarrow 31$	$2.04 \\ 2.57$	0.02	$1A^{-11A}$	2.54 2.57	0.04	$1A^{"} \rightarrow 18A^{"}$	$\frac{2.03}{2.62}$	0.12
$1 \rightarrow 30$ $1 \rightarrow 31$	2.02 2.57	0.00	$2 \rightarrow 31$ $2 \rightarrow 32$	2.07	0.02	$1A^{-14A}$	2.57	0.04	$1A^{"} \rightarrow 10A^{"}$	2.65	0.16
$1 \rightarrow 32$	2.60	0.00	$2 \rightarrow 32$	2.00	0.02	$1 \Lambda^{"} \rightarrow 18 \Lambda^{"}$	2.00 2.61	0.01	$1 \Delta^{"} \rightarrow 15 \Delta^{'}$	2.65	0.00
$1 \rightarrow 32$ $1 \rightarrow 33$	2.00	0.07	$2 \rightarrow 30$ $2 \rightarrow 34$	2.02 2.65	0.18	$1A^{-10A}$	2.01	0.10	$1A^{"} \rightarrow 16A^{"}$	$\frac{2.00}{2.68}$	0.00
$1 \rightarrow 30$ $1 \rightarrow 34$	2.05 2.65	0.15	$2 \rightarrow 34$ $2 \rightarrow 35$	$\frac{2.00}{2.72}$	2 30	$1A^{-713A}$	2.04 2.72	2.16	$1A^{"} \rightarrow 20A^{"}$	$2.00 \\ 2.71$	3.60
$1 \rightarrow 54$ $1 \rightarrow 35$	$\frac{2.00}{2.70}$	0.00	2 - 30	2.12 2.76	2.50	$1A^{-}_{20A}$	2.12 2.75	2.10	$1A^{,} \rightarrow 20A^{,}$	$\frac{2.71}{2.72}$	0.00
$1 \rightarrow 30$ $1 \rightarrow 36$	$2.70 \\ 2.75$	2.55	$2 \rightarrow 30$ $2 \rightarrow 37$	2.10 2.77	0.00	1A, -21A 1A, -21A	2.15	0.01	$1\Lambda^{"}$ $91\Lambda^{"}$	2.12	0.00
$1 \rightarrow 30$ $1 \rightarrow 27$	2.10	0.01	2 - 31	2.11	0.00	$1A \rightarrow 10A$ $1A'' \rightarrow 17A'$	2.70	0.00	$1A \rightarrow 21A$ $1A'' \rightarrow 22A''$	2.62	0.00
$1 \rightarrow 37$ $1 \rightarrow 29$	2.10	0.00	$2 \rightarrow 30$	2.00	0.01	$1A \rightarrow 1/A$ $1A'' \rightarrow 18A'$	2.19	0.00	$1A \rightarrow 22A$ $1A'' \rightarrow 18A'$	2.00	0.08
$1 \rightarrow 30$ $1 \rightarrow 20$	2.60	0.00	$2 \rightarrow 39$	2.00	0.00	$1A \rightarrow 10A$ $1A^{"} \rightarrow 22A^{"}$	2.00	0.00	$1A^{-} \rightarrow 10A^{-}$	2.80	0.00
$1 \rightarrow 39$ $1 \rightarrow 40$	2.00	0.01	$2 \rightarrow 40$	2.00	0.01	$1A \rightarrow 22A$ $1A^{2} \rightarrow 10A^{2}$	2.01	0.01	$1A \rightarrow 23A$ $1A^{2} \rightarrow 10A^{2}$	2.90	0.47
$1 \rightarrow 40$ $1 \rightarrow 41$	2.01	0.00	$2 \rightarrow 41$	2.90	0.00	$1A \rightarrow 19A$ $1A^{\circ} \rightarrow 22A^{\circ}$	2.93	0.00	$1A \rightarrow 19A$ $1A^{"} \rightarrow 24A^{"}$	2.92	0.00
$1 \rightarrow 41$ $1 \rightarrow 42$	2.93	0.00	$2 \rightarrow 42$	2.91	0.03	$1A \rightarrow 23A^{\circ}$	2.90	0.04	$1A \rightarrow 24A^{\circ}$ $1A^{\circ} \rightarrow 20A^{\circ}$	2.90	0.00
$1 \rightarrow 42$	2.90	0.02	$2 \rightarrow 43$	3.00	0.02	$1A \rightarrow 24A^{\circ}$	∠.99 2.01	0.07	$1A \rightarrow 20A'$	3.04	0.01
$1 \rightarrow 43$	2.99	0.02	$2 \rightarrow 44$	3.02	0.00	$1A'' \rightarrow 20A'$	3.01	0.02	$1A'' \rightarrow 25A''$	3.06	0.01
$1 \rightarrow 44$	3.02	0.05	$2 \rightarrow 45$	3.04	0.05	$ 1A'' \rightarrow 25A''$	3.10	0.00			

Table S17: Adenine. CAM-B3LYP/aug-cc-pVDZ ESA transition energies $(\Delta E, eV)$ and oscillator strengths (f) from $L_b/2A'$, computed in the Tamm-Dancoff approximation at TDDFT level in gAs phase, and with TDDFT in non-equilibrium PCM (chloroform).

TDA (Turbom	ole) - S ₃	TDDFT	(Turbo	mole) - S_3	TDDFT	(Dalton) - 2A'	TDDFT PC	M (Dalt	ion) - 2A'
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$
$3 \rightarrow 4$	0.07	0.00	$3 \rightarrow 4$	0.15	0.00	2A'→2A"	0.15	0.00	$2A' \rightarrow 1A''$	0.03	0.00
$3 \rightarrow 5$	0.38	0.07	$3 \rightarrow 5$	0.44	0.00	2A'→3A"	0.44	0.00	$2A' \rightarrow 2A''$	0.29	0.01
$3 \rightarrow 6$	0.41	0.07	$3 \rightarrow 6$	0.48	0.03	$2A' \rightarrow 4A''$	0.47	0.03	2A'→3A"	0.61	0.00
$3 \rightarrow 7$	0.74	0.00	$3 \rightarrow 7$	0.79	0.00	$2A' \rightarrow 5A''$	0.79	0.00	$2A' \rightarrow 4A''$	0.81	0.11
$3 \rightarrow 8$	0.90	0.00	$3 \rightarrow 8$	0.98	0.08	2A'→6A"	0.96	0.07	$2A' \rightarrow 5A''$	0.96	0.00
$3 \rightarrow 9$	1.08	0.10	$3 \rightarrow 9$	1.07	0.45	$ 2A' \rightarrow 3A'$	1.07	0.46	$2A' \rightarrow 3A'$	1.00	0.66
$3 \rightarrow 10$	1.15	0.89	$3 \rightarrow 10$	1.16	0.07	$ 2A' \rightarrow 7A''$	1.15	0.07	2A'→6A"	1.03	0.06
$3 \rightarrow 11$	1.22	0.11	$3 \rightarrow 11$	1.23	0.22	$ 2A' \rightarrow 4A'$	1.23	0.22	$2A' \rightarrow 4A'$	1.27	0.15
$3 \rightarrow 12$	1.25	0.59	$3 \rightarrow 12$	1.30	0.01	$ 2A' \rightarrow 5A'$	1.29	0.01	2A'→7A"	1.38	0.08
$3 \rightarrow 13$	1.29	0.02	$3 \rightarrow 13$	1.37	0.00	2A'→8A"	1.35	0.00	$2A' \rightarrow 5A'$	1.44	0.83
$3 \rightarrow 14$	1.36	0.00	$3 \rightarrow 14$	1.43	0.00	2A'→9A"	1.43	0.00	$2A' \rightarrow 6A'$	1.53	0.41
$3 \rightarrow 15$	1.41	0.00	$3 \rightarrow 15$	1.45	0.00	2A'→10A"	1.44	0.00	2A'→8A"	1.55	0.01
$3 \rightarrow 16$	1.51	0.00	$3 \rightarrow 16$	1.51	0.88	$2A' \rightarrow 6A'$	1.51	0.90	$2A' \rightarrow 9A''$	1.57	0.00
$3 \rightarrow 17$	1.56	0.00	$3 \rightarrow 17$	1.61	0.00	$2A' \rightarrow 11A''$	1.61	0.00	$2A' \rightarrow 7A'$	1.65	0.01
$3 \rightarrow 18$	1.58	0.00	$3 \rightarrow 18$	1.62	0.01	$2A' \rightarrow 7A'$	1.62	0.01	2A'→10A"	1.67	0.02
$3 \rightarrow 19$	1.66	0.10	$3 \rightarrow 19$	1.65	0.05	$2A' \rightarrow 12A''$	1.63	0.04	2A'→11A"	1.72	0.03
$3 \rightarrow 20$	1.68	0.15	$3 \rightarrow 20$	1.70	0.03	$2A' \rightarrow 8A'$	1.69	0.04	2A'→12A"	1.79	0.01
$3 \rightarrow 21$	1.79	0.07	$3 \rightarrow 21$	1.87	0.11	2A'→13A"	1.86	0.11	$2A' \rightarrow 8A'$	1.89	0.35
$3 \rightarrow 22$	1.85	0.02	$3 \rightarrow 22$	1.92	0.02	$2A' \rightarrow 9A'$	1.90	0.02	$2A' \rightarrow 9A'$	2.11	0.01
$3 \rightarrow 23$	2.13	0.33	$3 \rightarrow 23$	1.99	0.76	$2A' \rightarrow 10A'$	1.99	0.74	2A'→13A"	2.12	0.13
$3 \rightarrow 24$	2.18	0.06	$3 \rightarrow 24$	2.24	0.05	$2A' \rightarrow 11A'$	2.23	0.04	$2A' \rightarrow 10A'$	2.18	0.45
$3 \rightarrow 25$	2.20	0.33	$3 \rightarrow 25$	2.26	0.00	$2A' \rightarrow 14A''$	2.25	0.00	$2A' \rightarrow 11A'$	2.34	1.58
$3 \rightarrow 26$	2.22	0.16	$3 \rightarrow 26$	2.31	0.00	$2A' \rightarrow 15A''$	2.29	0.01	$2A' \rightarrow 14A''$	2.40	0.00
$3 \rightarrow 27$	2.26	1.13	$3 \rightarrow 27$	2.33	1.07	$2A' \rightarrow 12A'$	2.33	1.04	$2A' \rightarrow 15A''$	2.42	0.01
$3 \rightarrow 28$	2.29	0.01	$3 \rightarrow 28$	2.36	0.01	$2A' \rightarrow 13A'$	2.34	0.05	$2A' \rightarrow 12A'$	2.44	0.88
$3 \rightarrow 29$	2.31	0.01	$3 \rightarrow 29$	2.38	0.01	2A'→16A"	2.36	0.02	2A'→16A"	2.55	0.00
$3 \rightarrow 30$	2.32	0.45	$3 \rightarrow 30$	2.40	0.00	2A'→17A"	2.40	0.00	$2A' \rightarrow 13A'$	2.57	0.13
$3 \rightarrow 31$	2.37	0.09	$3 \rightarrow 31$	2.43	0.35	$2A' \rightarrow 14A'$	2.43	0.21	2A'→17A"	2.60	0.00
$3 \rightarrow 32$	2.40	0.26	$3 \rightarrow 32$	2.46	0.25	$2A' \rightarrow 15A'$	2.45	0.40	$2A' \rightarrow 14A'$	2.62	0.08
$3 \rightarrow 33$	2.43	0.04	$3 \rightarrow 33$	2.48	0.15	2A'→18A"	2.47	0.16	2A'→18A"	2.65	0.15
$3 \rightarrow 34$	2.45	0.19	$3 \rightarrow 34$	2.51	0.07	2A'→19A"	2.50	0.06	$2A' \rightarrow 19A''$	2.68	0.11
$3 \rightarrow 35$	2.50	0.01	$3 \rightarrow 35$	2.58	0.00	2A'→20A"	2.58	0.00	$2A' \rightarrow 15A'$	2.68	1.55
$3 \rightarrow 36$	2.55	0.06	$3 \rightarrow 36$	2.62	1.31	$2A' \rightarrow 21A''$	2.61	0.00	$2A' \rightarrow 16A'$	2.71	0.34
$3 \rightarrow 37$	2.58	0.12	$3 \rightarrow 37$	2.63	0.00	$2A' \rightarrow 16A'$	2.62	1.20	$2A' \rightarrow 20A''$	2.74	0.00
$3 \rightarrow 38$	2.60	0.21	$3 \rightarrow 38$	2.66	0.11	$2A' \rightarrow 17A'$	2.65	0.18	$2A' \rightarrow 17A'$	2.75	1.62
$3 \rightarrow 39$	2.66	0.06	$3 \rightarrow 39$	2.71	0.89	$2A' \rightarrow 18A'$	2.71	0.94	$2A' \rightarrow 21A''$	2.85	0.02
$3 \rightarrow 40$	2.67	0.41	$3 \rightarrow 40$	2.74	0.01	$2A' \rightarrow 22A''$	2.73	0.01	$2A' \rightarrow 22A''$	2.88	0.00
$3 \rightarrow 41$	2.73	0.06	$3 \rightarrow 41$	2.81	0.02	$2A' \rightarrow 19A'$	2.79	0.02	$2A' \rightarrow 18A'$	2.89	1.36
$3 \rightarrow 42$	2.75	0.01	$3 \rightarrow 42$	2.83	0.01	2A'→23A"	2.82	0.01	2A'→23A"	2.93	0.00
$3 \rightarrow 43$	2.79	0.01	$3 \rightarrow 43$	2.86	0.01	$2A' \rightarrow 24A''$	2.85	0.00	$2A' \rightarrow 19A'$	2.95	0.26
$3 \rightarrow 44$	2.82	0.02	$3 \rightarrow 44$	2.88	1.51	$2A' \rightarrow 20A'$	2.87	0.50	$2A' \rightarrow 24A''$	2.99	0.01
$3 \rightarrow 45$	2.87	1.56	$3 \rightarrow 45$	2.90	0.18	$2A' \rightarrow 25A''$	2.96	0.00	$2A' \rightarrow 20A'$	3.07	0.06
$3 \rightarrow 46$	2.91	0.00	$3 \rightarrow 46$	2.99	0.00				$2A' \rightarrow 25A''$	3.09	0.03

0	OPA			$ESA(S_1)$			$ESA(S_2)$			$ESA(S_3)$	
Trans.	$\omega [\mathrm{eV}]$	$f \times 100$	Trans.	ω [eV]	$f \times 100$	Trans.	$\omega [\text{eV}]$	$f \times 100$	Trans.	ω [eV]	$f \times 100$
$0 \rightarrow 1$	5.406	0.52	$1 \rightarrow 2$	0.103	0.00	$2 \rightarrow 3$	0.021	0.00	$3 \rightarrow 4$	0.026	0.00
$0 \rightarrow 2$	5.509	0.17	$1 \rightarrow 3$	0.124	0.04	$2 \rightarrow 4$	0.047	0.00	$3 \rightarrow 5$	0.380	0.27
$0 \rightarrow 3$	5.530	29.83	$1 \rightarrow 4$	0.149	0.00	$2 \rightarrow 5$	0.401	0.19	$3 \rightarrow 6$	0.572	0.00
$0 \rightarrow 4$	5.556	0.96	$1 \rightarrow 5$	0.503	0.04	$2 \rightarrow 6$	0.593	0.44	$3 \rightarrow 7$	0.851	0.26
$0 \rightarrow 5$	5.910	0.11	$1 \rightarrow 6$	0.695	0.01	$2 \rightarrow 7$	0.872	0.10	$3 \rightarrow 8$	0.990	0.00
$0 \rightarrow 6$	6.102	0.32	$1 \rightarrow 7$	0.975	0.04	$2 \rightarrow 8$	1.011	1.06	$3 \rightarrow 9$	1.060	0.01
$0 \rightarrow 7$	6.381	0.13	$1 \rightarrow 8$	1.114	0.00	$2 \rightarrow 9$	1.081	0.03	$3 \rightarrow 10$	1.088	0.05
$0 \rightarrow 8$	6.520	0.14	$1 \rightarrow 9$	1.184	0.07	$2 \rightarrow 10$	1.109	0.03	$3 \rightarrow 11$	1.123	1.88
$0 \rightarrow 9$	6.590	0.00	$1 \rightarrow 10$	1.211	0.02	$2 \rightarrow 11$	1.144	0.02	$3 \rightarrow 12$	1.174	3.14
$0 \rightarrow 10$	6.618	5.05	$1 \rightarrow 11$	1.247	0.41	$2 \rightarrow 12$	1.195	0.13	$3 \rightarrow 13$	1.220	0.01
$0 \rightarrow 11$	6.653	31.99	$1 \rightarrow 12$	1.298	0.68	$2 \rightarrow 13$	1.241	0.01	$3 \rightarrow 14$	1.279	0.02
$0 \rightarrow 12$	6.704	16.28	$1 \rightarrow 13$	1.344	0.00	$2 \rightarrow 14$	1.300	0.02	$3 \rightarrow 15$	1.522	0.09
$0 \rightarrow 13$	6.750	0.20	$1 \rightarrow 14$	1.403	0.00	$2 \rightarrow 15$	1.543	0.06	$3 \rightarrow 16$	1.545	3.49
$0 \rightarrow 14$	6.809	0.07	$1 \rightarrow 15$	1.645	0.03	$2 \rightarrow 16$	1.566	0.18	$3 \rightarrow 17$	1.564	1.26
$0 \rightarrow 15$	7.052	0.53	$1 \rightarrow 16$	1.668	0.40	$2 \rightarrow 17$	1.585	0.44	$3 \rightarrow 18$	1.647	0.00
$0 \rightarrow 16$	7.075	15.03	$1 \rightarrow 17$	1.688	0.25	$2 \rightarrow 18$	1.668	4.23	$3 \rightarrow 19$	1.652	5.23
$0 \rightarrow 17$	7.094	3.67	$1 \rightarrow 18$	1.770	0.00	$2 \rightarrow 19$	1.673	0.11	$3 \rightarrow 20$	1.706	0.01
$0 \rightarrow 18$	7.177	1.18	$1 \rightarrow 19$	1.775	0.00	$2 \rightarrow 20$	1.727	0.01	$3 \rightarrow 21$	1.750	0.29
$0 \rightarrow 19$	7.182	1.47	$1 \rightarrow 20$	1.829	0.11	$2 \rightarrow 21$	1.771	0.04	$3 \rightarrow 22$	1.813	0.00
$0 \rightarrow 20$	7.236	0.34	$1 \rightarrow 21$	1.873	0.11	$2 \rightarrow 22$	1.834	1.47	$3 \rightarrow 23$	2.065	0.20
$0 \rightarrow 21$	7.280	1.52	$1 \rightarrow 22$	1.936	0.01	$2 \rightarrow 23$	2.086	0.01	$3 \rightarrow 24$	2.092	0.00
$0 \rightarrow 22$	7.343	0.00	$1 \rightarrow 23$	2.189	0.59	$2 \rightarrow 24$	2.113	0.04	$3 \rightarrow 25$	2.110	0.42
$0 \rightarrow 23$	7.595	28.61	$1 \rightarrow 24$	2.215	0.00	$2 \rightarrow 25$	2.131	0.00	$3 \rightarrow 26$	2.162	0.80
$0 \rightarrow 24$	7.622	0.17	$1 \rightarrow 25$	2.233	0.04	$2 \rightarrow 26$	2.183	0.01	$3 \rightarrow 27$	2.201	0.15
$0 \rightarrow 25$	7.640	3.13	$1 \rightarrow 26$	2.286	0.04	$2 \rightarrow 27$	2.222	0.00	$3 \rightarrow 28$	2.205	0.19
$0 \rightarrow 26$	7.692	0.10	$1 \rightarrow 27$	2.324	0.16	$2 \rightarrow 28$	2.226	0.13	$3 \rightarrow 29$	2.227	0.41
$0 \rightarrow 27$	7.731	2.73	$1 \rightarrow 28$	2.329	0.00	$2 \rightarrow 29$	2.248	0.00	$3 \rightarrow 30$	2.227	0.00
$0 \rightarrow 28$	7.735	0.07	$1 \rightarrow 29$	2.350	1.77	$2 \rightarrow 30$	2.248	2.00	$3 \rightarrow 31$	2.269	0.03
$0 \rightarrow 29$	7.756	2.88	$1 \rightarrow 30$	2.350	0.04	$2 \rightarrow 31$	2.290	0.04	$3 \rightarrow 32$	2.337	0.09
$0 \rightarrow 30$	7.757	0.27	$1 \rightarrow 31$	2.393	0.00	$2 \rightarrow 32$	2.358	0.04	$3 \rightarrow 33$	2.374	0.03
$0 \rightarrow 31$	7.799	0.00	$1 \rightarrow 32$	2.460	0.04	$2 \rightarrow 33$	2.395	0.04	$3 \rightarrow 34$	2.427	1.36
$0 \rightarrow 32$	7.867	0.14	$1 \rightarrow 33$	2.498	0.15	$2 \rightarrow 34$	2.448	0.00	$3 \rightarrow 35$	2.458	0.12
$0 \rightarrow 33$	7.904	0.10	$1 \rightarrow 34$	2.551	0.41	$2 \rightarrow 35$	2.479	0.03	$3 \rightarrow 36$	2.480	0.40
$0 \rightarrow 34$	7.957	1.58	$1 \rightarrow 35$	2.582	0.03	$2 \rightarrow 36$	2.501	0.00	$3 \rightarrow 37$	2.536	2.44
$0 \rightarrow 35$	7.988	0.48	$1 \rightarrow 36$	2.604	0.11	$2 \rightarrow 37$	2.557	0.00	$3 \rightarrow 38$	2.589	1.05
$0 \rightarrow 36$	8.010	1.13	$1 \rightarrow 37$	2.660	0.95	$2 \rightarrow 38$	2.610	0.00	$3 \rightarrow 39$	2.607	0.07
$0 \rightarrow 37$	8.066	1.43	$1 \rightarrow 38$	2.712	0.40	$2 \rightarrow 39$	2.628	0.06	$3 \rightarrow 40$	2.711	0.24
$0 \rightarrow 38$	8.119	0.24	$1 \rightarrow 39$	2.731	0.01	$2 \rightarrow 40$	2.732	0.08			
$0 \rightarrow 39$	8.137	0.02	$1 \rightarrow 40$	2.835	0.00						
$0 \rightarrow 40$	8.241	0.48									

Table S18: Adenine. CCSD/aug-cc-pVDZ OPA and ESA transition energies (ω) and oscillator strengths (f).

bulongen	· (J)·										
	OPA			$ESA(S_1)$			$ESA(S_2)$			$ESA(S_3)$	
Transit.	$\omega [\mathrm{eV}]$	$f \times 100$	Transit.	$\omega [\mathrm{eV}]$	$f \times 100$	Transit.	$\omega [\mathrm{eV}]$	$f \times 100$	Transit.	$\omega [eV]$	$f \times 100$
$0 \rightarrow 1$	5.244	0.55	$1 \rightarrow 2$	0.040	0.00	$2 \rightarrow 3$	0.047	0.00	$3 \rightarrow 4$	0.130	0.00
$0 \rightarrow 2$	5.284	0.11	$1 \rightarrow 3$	0.086	0.04	$2 \rightarrow 4$	0.177	0.00	$3 \rightarrow 5$	0.481	0.32
$0 \rightarrow 3$	5.331	26.13	$1 \rightarrow 4$	0.216	0.01	$2 \rightarrow 5$	0.528	0.01	$3 \rightarrow 6$	0.559	0.01
$0 \rightarrow 4$	5.461	0.94	$1 \rightarrow 5$	0.567	0.00	$2 \rightarrow 6$	0.606	0.28	$3 \rightarrow 7$	0.944	0.00
$0 \rightarrow 5$	5.812	0.09	$1 \rightarrow 6$	0.645	0.01	$2 \rightarrow 7$	0.991	1.03	$3 \rightarrow 8$	0.980	0.17
$0 \rightarrow 6$	5.890	0.29	$1 \rightarrow 7$	1.030	0.00	$2 \rightarrow 8$	1.027	0.00	$3 \rightarrow 9$	1.086	0.03
$0 \rightarrow 7$	6.275	0.09	$1 \rightarrow 8$	1.066	0.10	$2 \rightarrow 9$	1.132	0.00	$3 \rightarrow 10$	1.088	0.11
$0 \rightarrow 8$	6.311	0.11	$1 \rightarrow 9$	1.172	0.70	$2 \rightarrow 10$	1.135	0.01	$3 \rightarrow 11$	1.177	0.05
$0 \rightarrow 9$	6.416	34.10	$1 \rightarrow 10$	1.174	0.13	$2 \rightarrow 11$	1.223	0.01	$3 \rightarrow 12$	1.177	5.99
$0 \rightarrow 10$	6.419	8.56	$1 \rightarrow 11$	1.263	0.04	$2 \rightarrow 12$	1.223	0.00	$3 \rightarrow 13$	1.328	0.01
$0 \rightarrow 11$	6.508	0.00	$1 \rightarrow 12$	1.263	0.42	$2 \rightarrow 13$	1.374	0.00	$3 \rightarrow 14$	1.396	0.03
$0 \rightarrow 12$	6.507	0.00	$1 \rightarrow 13$	1.414	0.00	$2 \rightarrow 14$	1.442	0.01	$3 \rightarrow 15$	1.472	1.80
$0 \rightarrow 13$	6.658	0.14	$1 \rightarrow 14$	1.482	0.00	$2 \rightarrow 15$	1.519	0.01	$3 \rightarrow 16$	1.533	0.10
$0 \rightarrow 14$	6.726	0.09	$1 \rightarrow 15$	1.558	1.38	$2 \rightarrow 16$	1.580	0.47	$3 \rightarrow 17$	1.568	1.35
$0 \rightarrow 15$	6.803	2.74	$1 \rightarrow 16$	1.619	0.23	$2 \rightarrow 17$	1.615	0.01	$3 \rightarrow 18$	1.612	0.01
$0 \rightarrow 16$	6.864	6.59	$1 \rightarrow 17$	1.655	0.03	$2 \rightarrow 18$	1.659	2.25	$3 \rightarrow 19$	1.665	0.06
$0 \rightarrow 17$	6.899	3.47	$1 \rightarrow 18$	1.698	0.01	$2 \rightarrow 19$	1.712	0.40	$3 \rightarrow 20$	1.699	0.00
$0 \rightarrow 18$	6.943	1.57	$1 \rightarrow 19$	1.751	0.05	$2 \rightarrow 20$	1.745	1.09			
$0 \rightarrow 19$	6.996	0.00	$1 \rightarrow 20$	1.785	0.01						
$0 \rightarrow 20$	7.029	0.00	•								

Table S19: Adenine. CC3/aug-cc-pVDZ OPA and ESA transition energies (ω) and oscillator strengths (f).

SS4.4 Guanine

Table S20: Guanine. CAM-B3LYP/aug-cc-pVDZ OPA excitation energies $(\Delta E, \text{ eV})$ and oscillator strengths (f), computed in the Tamm-Dancoff approximation (CIS), with TDDFT in gas phase, and TDDFT in non-equilibrium PCM (chloroform). First IP is 7.97 eV.

TDA	(Turbo	omole)	TDDFT	' (Turbe	omole)	TDDF	Γ (Dalte	on)	TDDFT I	PCM (D	alton)
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$
$0 \rightarrow 1$	5.05	0.27	$0 \rightarrow 1$	5.05	0.26	$0 \rightarrow 1A$ "	5.04	0.25	$0 \rightarrow 1 \text{A' L}_a$	5.07	18.52
$0 \rightarrow 2$	5.29	18.77	$0 \rightarrow 2 L_a$	5.13	14.86	$0 \rightarrow 1 \mathrm{A}' \mathrm{L}_a$	5.13	14.85	$0 \rightarrow 1$ A"	5.38	0.12
$0 \rightarrow 3$	5.45	0.47	$ 0 \rightarrow 3$	5.45	0.46	$0 \rightarrow 2A$ "	5.44	0.46	$0 \rightarrow 2A' L_b$	5.51	48.63
$0 \rightarrow 4$	5.61	0.00	$0 \rightarrow 4 L_b$	5.57	33.72	$0 \rightarrow 2A' L_b$	5.57	33.70	$0 \rightarrow 2 \mathrm{A}" n \pi^*$	5.82	0.08
$0 \rightarrow 5$	5.74	39.85	$0 \rightarrow 5 n\pi^*$	5.59	0.00	$0 \rightarrow 3$ A" $n\pi^*$	5.59	0.00	$0 \rightarrow 3A$ "	5.86	0.90
$0 \rightarrow 6$	5.96	0.08	$0 \rightarrow 6$	5.96	0.08	$0 \rightarrow 4A$ "	5.95	0.08	$0 \rightarrow 4$ A"	6.20	0.03
$0 \rightarrow 7$	6.16	0.07	$0 \rightarrow 7$	6.16	0.05	$0 \rightarrow 5A''$	6.16	0.05	$0 \rightarrow 5A''$	6.46	0.34
$0 \rightarrow 8$	6.40	0.40	$0 \rightarrow 8$	6.35	0.25	$0 \rightarrow 6A''$	6.35	0.26	$0 \rightarrow 6A''$	6.47	0.07
$0 \rightarrow 9$	6.42	0.00	$0 \rightarrow 9$	6.42	0.04	$0 \rightarrow 7A''$	6.40	0.03	$0 \rightarrow 3A'$	6.53	0.16
$0 \rightarrow 10$	6.49	0.01	$0 \rightarrow 10$	6.47	0.14	$0 \rightarrow 3A'$	0.48	0.14	$0 \rightarrow 4A'$	0.50	1.12
$0 \rightarrow 11$	0.00	0.78	$0 \rightarrow 11$	0.48	0.01	$0 \rightarrow 8A^{\circ}$	0.48	0.01	$0 \rightarrow 7 A^{"}$	0.0Z	0.00
$0 \rightarrow 12$ 0 $\rightarrow 12$	0.07	1.72	$0 \rightarrow 12$	6.75	1.49	$0 \rightarrow 4A$ $0 \rightarrow 0A$ "	6.75	1.50	$0 \rightarrow 6A$	6.08	0.00
$0 \rightarrow 13$	6.77	2.08	$0 \rightarrow 13$	6.75	2.11	$0 \rightarrow 9A$	6.75	2.00	$0 \rightarrow 9A$	7.00	46.72
$0 \rightarrow 14$ $0 \rightarrow 15$	6.03	2.08	$0 \rightarrow 14$ $0 \rightarrow 15$	6.03	0.00	$0 \rightarrow 10 A$ "	6.02	2.09	$0 \rightarrow 3A$ $0 \rightarrow 10A$ "	$7.00 \\ 7.24$	40.72
$0 \rightarrow 10$ $0 \rightarrow 16$	7.12	0.02	$0 \rightarrow 15$ $0 \rightarrow 16$	7.11	1.63	$0 \rightarrow 6 \Lambda$	7.02	1.47	$0 \rightarrow 6 \Delta^{\prime}$	7.24 7.25	0.14
$0 \rightarrow 17$	7 15	0.00	$0 \rightarrow 10$ $0 \rightarrow 17$	$7.11 \\ 7.14$	0.00	$0 \rightarrow 11 \text{ A}^{"}$	$7.10 \\ 7.14$	0.00	$0 \rightarrow 11 \text{ A}^{"}$	7 30	0.00
$0 \rightarrow 18$	7 17	0.33	$0 \rightarrow 18$	7 16	0.34	$0 \rightarrow 12A$ "	7 16	0.36	$0 \rightarrow 7A'$	$7.00 \\ 7.41$	9.58
$0 \rightarrow 19$	7.26	0.00	$0 \rightarrow 19$	7.21	31.17	$0 \rightarrow 7 \overline{A}$	7.21	31.02	$0 \rightarrow 8A^{\prime}$	7.43	17.68
$0 \rightarrow 20$	7.31	28.20	$0 \rightarrow 20$	7.26	0.00	$0 \rightarrow 13$ A"	7.25	0.00	$0 \rightarrow 12$ A"	7.46	0.00
$0 \rightarrow 21$	7.38	19.17	$0 \rightarrow 21$	7.36	3.05	$0 \rightarrow 8 A'$	7.35	3.81	$0 \rightarrow 9A'$	7.51	1.19
$0\rightarrow 22$	7.42	5.79	$0\rightarrow 22$	7.39	5.83	$0 \rightarrow 9A'$	7.39	5.31	$0 \rightarrow 13$ A"	7.53	1.64
$0\rightarrow 23$	7.45	1.79	$0\rightarrow 23$	7.42	1.14	$0 \rightarrow 14$ A"	7.42	1.16	$0 \rightarrow 10 \text{A}'$	7.58	12.63
$0\rightarrow 24$	7.48	0.22	$0 \rightarrow 24$	7.45	4.14	$0 \rightarrow 10 \text{A}'$	7.45	4.06	$0 \rightarrow 14$ A"	7.60	0.22
$0 \rightarrow 25$	7.55	0.26	$0 \rightarrow 25$	7.48	0.62	$0 \rightarrow 15 \text{A"}$	7.47	0.59	$0 \rightarrow 15 \text{A"}$	7.63	0.52
$0 \rightarrow 26$	7.56	4.12	$0 \rightarrow 26$	7.54	0.19	$0 \rightarrow 16 \text{A}$ "	7.53	0.17	$0 \rightarrow 11 \text{A}'$	7.72	12.07
$0 \rightarrow 27$	7.68	12.33	$0 \rightarrow 27$	7.57	25.83	$0 \rightarrow 11A'$	7.57	25.81	$0 \rightarrow 16 \text{A}^{"}$	7.84	0.26
$0 \rightarrow 28$	7.72	0.03	$0 \rightarrow 28$	7.71	4.11	$0 \rightarrow 12A'$	7.70	3.78	$0 \rightarrow 12A'$	7.88	6.41
$0 \rightarrow 29$	7.75	22.47	$0 \rightarrow 29$	7.72	0.02	$0 \rightarrow 17 \text{A}^{\prime\prime}$	7.71	0.02	$0 \rightarrow 13A'$	7.93	1.00
$0 \rightarrow 30$	7.82	7.38	$0 \rightarrow 30$	7.73	11.00	$0 \rightarrow 13A'$	7.73	10.98	$0 \rightarrow 17A^{\prime\prime}$	7.94	0.02
$0 \rightarrow 31$	7.89	13.15	$0 \rightarrow 31$	7.82	2.00	$0 \rightarrow 14A'$	7.81	2.50	$0 \rightarrow 14A'$	8.11	1.59
$0 \rightarrow 32$	7.91	0.94	$0 \rightarrow 32$	7.90	2.90	$0 \rightarrow 18 A^{\circ}$	1.88	0.72	$0 \rightarrow 18 A^{\circ}$	8.12	0.09
$0 \rightarrow 33$	7.93 8.01	4.78	$0 \rightarrow 33$	7.90	0.89	$0 \rightarrow 10 A^{\circ}$	7.89	2.90	$0 \rightarrow 15A'$	8.14	0.10
$0 \rightarrow 34$ 0 35	8.01	1.85	$0 \rightarrow 34$	8.00	1.55	$0 \rightarrow 19A$	8.00	0.23	$0 \rightarrow 19A$	0.20 8 21	1.30 6.43
$0 \rightarrow 30$ $0 \rightarrow 36$	8.03	0.34	$0 \rightarrow 30$ $0 \rightarrow 36$	8.00	0.24	$0 \rightarrow 20 \text{ Å}$	8.00	1.22 0.28	$0 \rightarrow 20 \text{ A}$	8 26	0.45
$0 \rightarrow 37$	8.07	2 11	$0 \rightarrow 37$	8.06	0.10	$0 \rightarrow 17 \text{A}^{3}$	8.05	0.28	$0 \rightarrow 20 A$ $0 \rightarrow 21 A$ "	8 28	0.08
$0 \rightarrow 38$	8.11	0.01	$0 \rightarrow 38$	8.09	1.82	$0 \rightarrow 18A'$	8.08	1.65	$0 \rightarrow 22 \text{A}$ "	8.34	0.83
$0 \rightarrow 39$	8.12	2.86	$0 \rightarrow 39$	8.11	0.01	$0 \rightarrow 21 \text{A}$ "	8.09	0.00	$0 \rightarrow 17A'$	8.34	1.39
$0 \rightarrow 40$	8.23	0.38	$0 \rightarrow 40$	8.20	3.35	$0 \rightarrow 22A$ "	8.18	0.30	$0 \rightarrow 18 \text{A}'$	8.37	6.60
$0 \rightarrow 41$	8.24	1.52	$0 \rightarrow 41$	8.23	0.37	$0 \rightarrow 19 \text{A}'$	8.19	3.22	$0 \rightarrow 23$ A"	8.41	0.64
$0 \rightarrow 42$	8.24	0.11	$0 \rightarrow 42$	8.24	0.10	$0 \rightarrow 23 A$ "	8.24	0.00	$0 \rightarrow 19A'$	8.44	0.87
$0 \rightarrow 43$	8.26	0.05	$0 \rightarrow 43$	8.26	0.05	$0 \rightarrow 24 A$ "	8.24	0.08	$0 \rightarrow 24 A$ "	8.46	0.15
$0 \rightarrow 44$	8.31	0.82	$0 \rightarrow 44$	8.27	1.25	$0 \rightarrow 20 \text{A}'$	8.27	1.27	$0 \rightarrow 25 \text{A"}$	8.50	0.42
$0 \rightarrow 45$	8.32	3.78	$0 \rightarrow 45$	8.31	0.73	$0 \rightarrow 25 \text{A}$ "	8.30	0.88	$0 \rightarrow 20 \text{A}'$	8.65	0.78
$0 \rightarrow 46$	8.41	0.82	$0 \rightarrow 46$	8.41	0.73						
$0 \rightarrow 47$	8.44	0.11	$0 \rightarrow 47$	8.44	0.08						
$0 \rightarrow 48$ $0 \rightarrow 40$	8.40	0.50	$0 \rightarrow 48$	8.40	0.47						
$0 \rightarrow 49$ $0 \rightarrow 50$	8.51	0.13	$0 \rightarrow 49$ $0 \rightarrow 50$	8 51	0.24						
$0\rightarrow 51$	8.52	0.00	$0 \rightarrow 51$	8.52	0.00						
$0\rightarrow 5\overline{2}$	8.55	0.06	$0 \rightarrow 5\overline{2}$	8.55	0.05						
$0 \rightarrow 53$	8.60	0.01	$0\rightarrow 53$	8.59	3.81						
$0 \rightarrow 54$	8.61	0.03	$0 \rightarrow 54$	8.60	0.02						
$0\rightarrow 55$	8.61	1.08	$0 \rightarrow 55$	8.60	3.11						
$0 \rightarrow 56$	8.64	4.24	$0 \rightarrow 56$	8.61	0.02						
$0 \rightarrow 57$	8.68	4.07	$10 \rightarrow 57$	8.66	3.69				1		

Table S21: Guanine. CAM-B3LYP/aug-cc-pVDZ ESA transition energies (ΔE , eV) and oscillator strengths (f) from S_{3A''} (n π^*), computed in the Tamm-Dancoff approximation, TDDFT in gas phase and TDDFT in non-equilibrium PCM (chloroform). Estimated first IP is 2.38 eV. Note the different state number for the initial state at TDA and TDDFT level.

TDA	(Turbo	omole)	TDDI	FT(Turb	oomole)	TDDF	T(Dalto	on)	TDDFT/	PCM(D	alton)
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	$\Delta \vec{E}$	$f \times 100$
$4\rightarrow 5$	0.13	0.00	$5 \rightarrow 6$	0.37	0.00	$3A" \rightarrow 4A"$	0.36	0.00	$3A" \rightarrow 4A"$	0.34	0.59
$4 \rightarrow 6$	0.35	0.00	$5 \rightarrow 7$	0.57	0.04	$3A" \rightarrow 5A"$	0.57	0.04	$3A" \rightarrow 5A"$	0.60	26.96
$4 \rightarrow 7$	0.55	0.03	$5 \rightarrow 8$	0.76	0.08	$3A" \rightarrow 6A"$	0.76	0.07	$3A" \rightarrow 6A"$	0.61	3.67
$4 \rightarrow 8$	0.79	0.08	$5 \rightarrow 9$	0.83	0.04	$3A" \rightarrow 7A"$	0.81	0.03	$3A^{"}\rightarrow 3A^{'}$	0.67	0.00
$4 \rightarrow 9$	0.81	0.03	$5 \rightarrow 10$	0.89	0.00	$3A^{"}\rightarrow 3A^{'}$	0.89	0.00	$3A" \rightarrow 4A'$	0.71	2.75
$4 \rightarrow 10$	0.88	0.06	$5 \rightarrow 11$	0.89	0.07	$3A" \rightarrow 8A"$	0.89	0.08	$3A" \rightarrow 7A"$	0.76	18.04
$4\rightarrow 11$	0.89	0.00	$5 \rightarrow 12$	0.97	0.00	$3A" \rightarrow 4A'$	0.98	0.00	$3A" \rightarrow 8A"$	0.84	0.07
$4\rightarrow 12$	1.06	0.01	$5 \rightarrow 13$	1.16	0.03	$3A" \rightarrow 9A"$	1.16	0.02	$3A" \rightarrow 9A"$	1.12	1.30
$4 \rightarrow 13$	1.15	0.02	$5 \rightarrow 14$	1.17	0.02	$3A" \rightarrow 5A'$	1.16	0.04	$3A" \rightarrow 5A'$	1.15	0.00
$4 \rightarrow 14$	1.16	0.03	$5 \rightarrow 15$	1.34	0.01	$3A^{"} \rightarrow 10A^{"}$	1.33	0.01	$3A^{"} \rightarrow 10A^{"}$	1.39	0.24
$4 \rightarrow 15$	1.32	0.01	$5 \rightarrow 16$	1.52	0.02	$3A" \rightarrow 6A'$	1.52	0.02	$3A'' \rightarrow 6A'$	1.39	0.10
$4 \rightarrow 16$	1.51	0.03	$5 \rightarrow 17$	1.55	0.27	$3A^{"} \rightarrow 11A^{"}$	1.55	0.40	$3A^{"} \rightarrow 11A^{"}$	1.45	7.15
$4 \rightarrow 17$	1.54	0.26	$5 \rightarrow 18$	1.57	0.01	$3A'' \rightarrow 12A''$	1.57	0.04	$3A'' \rightarrow 7A'$	1.56	0.77
$4 \rightarrow 18$	1.56	0.02	$5 \rightarrow 19$	1.63	0.00	$3A'' \rightarrow 7A'$	1.63	0.00	$3A'' \rightarrow 8A'$	1.58	5.03
$4 \rightarrow 19$	1.65	0.00	$5 \rightarrow 20$	1.67	0.00	$3A'' \rightarrow 13A''$	1.66	0.00	$3A'' \rightarrow 12A''$	1.60	0.16
$4 \rightarrow 20$	1.70	0.00	$5 \rightarrow 21$	1.77	0.03	$3A'' \rightarrow 8A'$	1.76	0.02	$3A'' \rightarrow 9A'$	1.65	0.08
$4 \rightarrow 21$	1.77	0.02	$5 \rightarrow 22$	1.80	0.01	$3A'' \rightarrow 9A'$	1.80	0.01	$3A'' \rightarrow 13A''$	1.67	0.02
$4 \rightarrow 22$	1.81	0.01	$5 \rightarrow 23$	1.83	0.11	$3A'' \rightarrow 14A''$	1.83	0.10	$3A'' \rightarrow 10A'$	1.73	15.56
$4 \rightarrow 23$	1.84	0.11	$5 \rightarrow 24$	1.80	0.00	$3A'' \rightarrow 10A'$	1.86	0.00	$3A'' \rightarrow 14A''$	1.75	0.05
$4 \rightarrow 24$	1.87	0.01	$5 \rightarrow 25$	1.89	0.00	$3A'' \rightarrow 15A''$	1.88	0.00	$3A'' \rightarrow 15A''$	1.78	0.20
$4 \rightarrow 25$	1.94	0.00	$5 \rightarrow 26$	1.95	0.00	$3A'' \rightarrow 10A''$	1.95	0.00	$3A'' \rightarrow 11A'$	1.80	0.00
$4 \rightarrow 26$	1.94	0.00	$5 \rightarrow 27$	1.98	0.01	$3A'' \rightarrow 11A'$	1.98	0.01	$3A'' \rightarrow 10A''$	1.99	1.31
$4 \rightarrow 27$	2.07	0.05	$3 \rightarrow 28$	2.12	0.03	$3A^{"} \rightarrow 12A^{"}$	2.11	0.03	$3A^{*} \rightarrow 12A^{*}$	2.02	0.10
$4 \rightarrow 28$	2.11	0.03	$3 \rightarrow 29$	2.13	0.03	$3A^{\circ} \rightarrow 1/A^{\circ}$	2.12	0.03	$3A^{\circ} \rightarrow 13A^{\circ}$	2.07	0.35
$4 \rightarrow 29$	2.14	0.00	$3 \rightarrow 30$	2.14	0.00	$3A^{\circ} \rightarrow 13A^{\circ}$	2.14	0.00	$3A^{\circ} \rightarrow 1/A^{\circ}$	2.08	2.11
$4 \rightarrow 30$	2.21	0.09	$0 \rightarrow 31$	2.20	0.14	$3A \rightarrow 14A$ $2A^{"} \rightarrow 18A^{"}$	2.22	0.14	$3A \rightarrow 14A$ $2A^{"} \rightarrow 18A^{"}$	2.20	0.04
$4 \rightarrow 31$	2.20	0.00	$5 \rightarrow 32$	2.31	0.03	$3A \rightarrow 10A$ $2A'' \rightarrow 15A'$	2.30	0.02	$3A \rightarrow 10A$ $2A'' \rightarrow 15A'$	2.20	0.00
$4 \rightarrow 32$	2.30	0.01	$5 \rightarrow 33$	2.31	0.01	$3A \rightarrow 10A$ $2A^{"} \rightarrow 10A^{"}$	2.30	0.02	$3A \rightarrow 10A$ $2A'' \rightarrow 10A''$	2.20	0.00
4-755	2.32	0.00	$5^{-}_{-}35$	2.40 2.41	0.00	3A, $16A$,	2.33	0.01	3Λ , 16Λ ,	2.04 2.35	2.02
4-34	$\frac{2.53}{2.41}$	0.01	$5 \rightarrow 36$	2.41 2.43	0.00	$3A^{"} \rightarrow 20A^{"}$	2.41 2 42	0.00	$3A^{"} \rightarrow 20A^{"}$	$\frac{2.00}{2.40}$	2 00
$4 \rightarrow 36$	2.41 2.41	0.00	$5 \rightarrow 37$	$2.40 \\ 2.47$	0.00	$3A^{"} \rightarrow 17A^{"}$	2.42 2.47	0.04	$3A^{"} \rightarrow 20A^{"}$	2.40 2.42	0.86
$4 \rightarrow 37$	2.41 2.46	0.00	$5 \rightarrow 38$	$\frac{2.41}{2.50}$	0.00	$3A^{"} \rightarrow 18A^{'}$	$\frac{2.41}{2.50}$	0.01	$3A^{"} \rightarrow 22A^{"}$	2.42 2.48	1.01
$4 \rightarrow 38$	$\frac{2.40}{2.50}$	0.01	$5 \rightarrow 39$	$\frac{2.50}{2.52}$	0.00	$3A^{"} \rightarrow 21A^{"}$	$\frac{2.50}{2.50}$	0.00	$3A^{"} \rightarrow 17A^{'}$	2.40 2.49	0.00
$4 \rightarrow 39$	2.51	0.00	$5 \rightarrow 40$	2.61	0.01	$3A^{"} \rightarrow 22A^{"}$	2.59	0.05	$3A^{"} \rightarrow 18A^{'}$	2.51	0.04
$4 \rightarrow 40$	2.62	0.18	$5 \rightarrow 41$	2.64	0.17	$3A" \rightarrow 19A'$	$\frac{1}{2.60}$	0.02	$3A^{"} \rightarrow 23A^{"}$	2.55	1.42
$4 \rightarrow 41$	2.63	0.03	$5 \rightarrow 42$	2.65	0.63	$3A^{"} \rightarrow 23A^{"}$	2.65	0.46	$3A^{"} \rightarrow 19A^{'}$	2.58	0.00
$4 \rightarrow 42$	2.63	0.61	$5 \rightarrow 43$	2.67	0.00	$3A" \rightarrow 24A"$	2.66	0.28	$3A" \rightarrow 24A"$	$\frac{1}{2.61}$	5.90
$4 \rightarrow 43$	2.65	0.00	$5 \rightarrow 44$	2.68	0.02	$3A" \rightarrow 20A'$	2.68	0.03	$3A^{"} \rightarrow 25A^{"}$	2.64	0.02
$4 \rightarrow 44$	2.70	0.00	$5 \rightarrow 45$	2.72	0.00	$3A" \rightarrow 25A"$	2.71	0.00	$3A" \rightarrow 20A'$	2.79	0.03
$4\rightarrow 45$	2.71	0.00	$5 \rightarrow 46$	2.82	0.00						
$4 \rightarrow 46$	2.80	0.00	$5 \rightarrow 47$	2.85	0.04						
$4 \rightarrow 47$	2.83	0.05	$5 \rightarrow 48$	2.87	0.13						
$4\rightarrow 48$	2.85	0.14	$5 \rightarrow 49$	2.90	0.00						
$4 \rightarrow 49$	2.90	0.00	$5 \rightarrow 50$	2.92	0.09						
$4\rightarrow 50$	2.90	0.10	$5 \rightarrow 51$	2.93	3.21						
$4\rightarrow 51$	2.91	3.15	$5 \rightarrow 52$	2.96	0.01						
$4 \rightarrow 52$	2.94	0.01	$2 \rightarrow 53$	3.00	0.00						
$4 \rightarrow 53$	2.99	0.04	$3 \rightarrow 54$	3.01	0.02						
$4 \rightarrow 04$ $4 \rightarrow 55$	3.00	0.00	$5 \rightarrow 50$	3.01	0.03						
$4 \rightarrow 56$	3.00	0.00	$5 \rightarrow 57$	3.02 3.08	0.01						
$4 \rightarrow 57$	3.07	0.01	$5 \rightarrow 58$	3.11	0.00						
$4 \rightarrow 58$	3.14	0.26	$5 \rightarrow 59$	3.15	0.26						
$4\rightarrow 59$	3.14	0. <u>0</u> 0	$5 \rightarrow 60$	3.17	0.02						
$4\rightarrow 60$	3.15	0.02									

Table S22: Guanine. CAM-B3LYP/aug-cc-pVDZ ESA transition energies $(\Delta E, \text{ eV})$ and oscillator strengths (f) from $S_{1A'}$ (L_a), computed using the Tamm-Dancoff approximation (CIS), TDDFT in gas phase, TDDFT with non-equilibrium PCM (chloroform). Estimated first IP is 2.84 eV.

TDA	(Turbe	omole)	TDDF	Γ (Turl	oomole)	TDDF	T (Dalt	on)	TDDFT/	PCM (I	Dalton)
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$
$2 \rightarrow 3$	0.16	0.02	$2 \rightarrow 3$	0.32	0.03	$1A' \rightarrow 2A''$	0.31	0.03	$1A' \rightarrow 1A''$	0.31	0.00
$2 \rightarrow 4$	0.32	0.00	$2 \rightarrow 4$	0.44	0.48	$1A' \rightarrow 2A'$	0.44	0.48	$ 1A' \rightarrow 2A' $	0.44	0.57
$2 \rightarrow 5$	0.45	0.47	$2 \rightarrow 5$	0.46	0.00	$1A' \rightarrow 3A''$	0.46	0.00	$1A' \rightarrow 2A''$	0.74	0.02
$2 \rightarrow 0$	0.07	0.00	$2 \rightarrow 0$	0.83	0.00	$1A \rightarrow 4A''$ $1A' \rightarrow 5A''$	0.82	0.00	$1A^{\prime} \rightarrow 3A^{\prime\prime}$	0.79	0.22
$2 \rightarrow 1$	1.10	0.00	$2 \rightarrow 1$	1.05	0.00	$1A \rightarrow 5A$ $1A' \rightarrow 6A''$	1.05	0.00	$1A \rightarrow 4A$ $1A' \rightarrow 5A''$	1.12	0.01
$2 \rightarrow 0$ $2 \rightarrow 0$	$1.10 \\ 1.13$	0.00	$2 \rightarrow 0$	1.22 1.20	0.00	$1A \rightarrow 0A$ $1A' \rightarrow 7A''$	1.22 1.27	0.00	$1A \rightarrow 5A$ $1A' \rightarrow 6A''$	1.39	0.02
$2 \rightarrow 3$ $2 \rightarrow 10$	$1.10 \\ 1.20$	0.01	$2 \rightarrow 3$ $2 \rightarrow 10$	1.23 1.34	$0.01 \\ 0.72$	$1A' \rightarrow 3A'$	1.27 1.35	0.01	$1A' \rightarrow 3A'$	1.40 1.46	0.01
$2 \rightarrow 11$	1.20 1.21	0.61	$2 \rightarrow 11$	1.35	0.01	$1A' \rightarrow 8A''$	1.35	0.01	$1A' \rightarrow 4A'$	1.49	0.78
$\overline{2} \rightarrow 12$	1.38	0.44	$2 \rightarrow 12$	1.43	0.38	$1A' \rightarrow 4A'$	1.43	0.36	$1A' \rightarrow 7A''$	1.54	0.03
$2 \rightarrow 13$	1.47	0.03	$2 \rightarrow 13$	1.62	0.45	$1A' \rightarrow 9A''$	1.62	0.03	1A'→8A"	1.63	0.02
$2 \rightarrow 14$	1.48	0.97	$2 \rightarrow 14$	1.62	0.03	$1A' \rightarrow 5A'$	1.62	0.48	1A'→9A"	1.91	0.17
$2 \rightarrow 15$	1.64	0.03	$2 \rightarrow 15$	1.80	0.03	1A'→10A"	1.79	0.03	$1A' \rightarrow 5A'$	1.93	0.06
$2 \rightarrow 16$	1.83	0.05	$2 \rightarrow 16$	1.98	0.03	$1A' \rightarrow 6A'$	1.97	0.03	1A'→10A"	2.17	0.00
$2 \rightarrow 17$	1.86	0.01	$2 \rightarrow 17$	2.01	0.00	$1A' \rightarrow 11A''$	2.01	0.00	$1A' \rightarrow 6A'$	2.17	1.42
$2 \rightarrow 18$	1.87	0.00	$2 \rightarrow 18$	2.03	0.00	$1A' \rightarrow 12A''$	2.03	0.00	$ 1A' \rightarrow 11A''$	2.23	0.00
$2 \rightarrow 19$	1.97	0.00	$2 \rightarrow 19$	2.08	0.09	$1A' \rightarrow A'$	2.08	0.08	$ 1A' \rightarrow A' $	2.34	1.51
$2 \rightarrow 20$	2.01	0.08	$2 \rightarrow 20$	2.13	0.00	$1A' \rightarrow 13A''$	2.12	0.00	$ 1A' \rightarrow 8A' 1A' \rightarrow 10A'' 1A'' $	2.30	1.37
$2 \rightarrow 21$ $2 \rightarrow 22$	2.09 2.13	0.01	$2 \rightarrow 21$	2.23	0.02	$1A \rightarrow 0A$	2.22	0.02	$1A \rightarrow 12A$ $1A' \rightarrow 0A'$	2.39	0.02
$2 \rightarrow 22$ $2 \rightarrow 23$	2.13 2.16	0.10	$2 \rightarrow 22$	$\frac{2.20}{2.20}$	0.14	1A' > 3A'	2.20	0.17	$1A^{-}_{3A}$	2.44	0.22
$2 \rightarrow 23$ $2 \rightarrow 24$	2.10 2.10	0.01	$2 \rightarrow 23$ $2 \rightarrow 24$	2.29 2.32	2.46	$1A' \rightarrow 10A'$	2.29 2.32	2.00	$1A' \rightarrow 10A'$	2.40 2.51	0.00
$2 \rightarrow 25$	2.15 2.25	0.00	$2 \rightarrow 25$	2.35	0.02	$1A' \rightarrow 15A''$	2.34	0.02	$1A' \rightarrow 14A''$	2.51	0.00
$\tilde{2} \rightarrow \tilde{26}$	2.26	2.35	$\tilde{2} \rightarrow \tilde{26}$	2.41	0.00	$1A' \rightarrow 16A''$	2.40	0.00	$1A' \rightarrow 15A''$	2.56	0.01
$\overline{2} \rightarrow \overline{27}$	2.39	0.21	$2 \rightarrow 27$	2.44	0.20	$1A' \rightarrow 11A'$	2.44	0.17	$1A' \rightarrow 11A'$	2.65	0.10
$2 \rightarrow 28$	2.43	0.20	$2 \rightarrow 28$	2.58	0.11	$1A' \rightarrow 12A'$	2.57	0.13	$1A' \rightarrow 16A''$	2.77	0.16
$2 \rightarrow 29$	2.45	0.53	$2 \rightarrow 29$	2.59	0.18	$1A' \rightarrow 17A''$	2.58	0.19	$1A' \rightarrow 12A'$	2.81	0.09
$2 \rightarrow 30$	2.53	0.07	$2 \rightarrow 30$	2.60	0.06	$1A' \rightarrow 13A'$	2.60	0.05	$1A' \rightarrow 13A'$	2.86	0.16
$2 \rightarrow 31$	2.60	0.10	$2 \rightarrow 31$	2.69	0.14	$1A' \rightarrow 14A'$	2.68	0.13	1A'→17A"	2.87	0.01
$2 \rightarrow 32$	2.61	0.00	$2 \rightarrow 32$	2.77	0.12	$1A' \rightarrow 18A''$	2.76	0.00	$ 1A' \rightarrow 14A' $	3.04	6.17
$2 \rightarrow 33$	2.64	0.10	$2 \rightarrow 33$	2.77	0.00	$1A' \rightarrow 15A'$	2.76	0.08	$ 1A' \rightarrow 18A'' $	3.05	0.01
$2 \rightarrow 34$	$\frac{2.11}{2.72}$	0.08	$2 \rightarrow 34$	2.80	1.60	$1A^{\prime} \rightarrow 19A^{\prime}$ $1A^{\prime} \rightarrow 16A^{\prime}$	2.84	0.00	$1A^{\prime} \rightarrow 15A^{\prime}$ $1A^{\prime} \rightarrow 10A^{\prime\prime}$	3.07	0.05
$2 \rightarrow 30$ $2 \rightarrow 36$	2.73 2.73	1.03	$2 \rightarrow 35$ $2 \rightarrow 36$	2.01	0.04	$1A \rightarrow 10A$ $1A' \rightarrow 20A''$	2.01	1.40	$1A \rightarrow 19A$ $1A' \rightarrow 16A'$	3.13	1.55
$2 \rightarrow 30$ $2 \rightarrow 37$	2.13 2.78	0.02	$2 \rightarrow 30$ $2 \rightarrow 37$	2.00 2.03	0.05	$1A' \rightarrow 17A'$	2.00 2.03	0.01	$1A' \rightarrow 20A''$	3.14	0.03
$2 \rightarrow 38$	2.82	0.00	$2 \rightarrow 38$	2.96	1.32	$1A' \rightarrow 18A'$	$\frac{2.96}{2.96}$	0.95	$1A' \rightarrow 21A''$	3.21	0.00
$\overline{2} \rightarrow 39$	2.83	0.51	$2 \rightarrow 39$	2.98	0.00	$1A' \rightarrow 21A''$	2.96	0.00	$1A' \rightarrow 22A''$	3.27	0.01
$2 \rightarrow 40$	2.94	0.04	$2 \rightarrow 40$	3.07	2.36	$1A' \rightarrow 22A''$	3.05	0.01	$1A' \rightarrow 17A'$	3.27	4.37
$2 \rightarrow 41$	2.95	1.25	$2 \rightarrow 41$	3.10	0.03	$1A' \rightarrow 19A'$	3.06	2.21	$1A' \rightarrow 18A'$	3.30	2.82
$2 \rightarrow 42$	2.95	0.14	$2 \rightarrow 42$	3.11	0.09	$1A' \rightarrow 23A''$	3.11	0.10	$1A' \rightarrow 23A''$	3.34	0.01
$2 \rightarrow 43$	2.97	0.01	$2 \rightarrow 43$	3.13	0.01	$1A' \rightarrow 24A''$	3.12	0.02	$1A' \rightarrow 19A'$	3.37	0.18
$2 \rightarrow 44$	3.02	0.00	$2 \rightarrow 44$	3.14	0.94	$1A' \rightarrow 20A'$	3.14	0.89	$1A' \rightarrow 24A''$	3.39	0.02
$2 \rightarrow 45$	3.03	2.56	$2 \rightarrow 45$	3.18	0.00	$1A' \rightarrow 25A''$	3.17	0.00	$1A' \rightarrow 25A''$	3.42	0.05
$2 \rightarrow 46$	3.12	0.04	$2 \rightarrow 46$	3.28	0.02				$1A' \rightarrow 20A'$	3.58	0.26
$2 \rightarrow 47$ $2 \rightarrow 48$	$3.10 \\ 3.17$	0.02	$2 \rightarrow 47$	3.31	0.01						
$2 \rightarrow 40$ $2 \rightarrow 49$	3 21	1.02	$2 \rightarrow 40$ $2 \rightarrow 40$	3.36	1.58						
$\tilde{2} \rightarrow 50$	3.21	0.00	$2 \rightarrow 50$	3.38	0.00						
$2 \rightarrow 51$	3.23	0.00	$2 \rightarrow 51$	3.39	0.00						
$2 \rightarrow 52$	3.26	0.01	$2 \rightarrow 52$	3.42	0.01						
$2 \rightarrow 53$	3.31	0.06	$2 \rightarrow 53$	3.46	2.83						
$2 \rightarrow 54$	3.31	0.00	$2 \rightarrow 54$	3.47	0.18						
$2 \rightarrow 55$	3.32 3.35	2.39 0.13	$2 \rightarrow 55$	3.47	0.19						
$2 \rightarrow 50$ $2 \rightarrow 57$	3.30	0.13	$2 \rightarrow 50$ $2 \rightarrow 57$	3.40	0.00						
$\tilde{2} \rightarrow 58$	3.45	0.00	$\tilde{2} \rightarrow 58$	3.57	2.71						
$2 \rightarrow 59$	3.45	2.51	$2 \rightarrow 59$	3.61	0.00						
$2 \rightarrow 60$	3.47	0.21	$2 \rightarrow 60$	3 63	0.18						

Table S23: Guanine. CAM-B3LYP/aug-cc-pVDZ ESA transition energies (ΔE , eV) and oscillator strengths (f) from S_{2A'} (L_b), computed with Tamm-Dancoff approximation (CIS), TDDFT and TDDFT in non-equilibrium PCM (chloroform). Estimated first IP is 2.4 eV.

TDA	(Turbo	mole)	TDDF	Γ (Turł	oomole)	TDDF	T (Dalt	on)	TDDFT/I	PCM (E	Dalton)
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$
$4 \rightarrow 5$	0.13	0.00	$4 \rightarrow 5$	0.02	0.00	2A'→3A"	0.02	0.00	$2A' \rightarrow 2A''$	0.31	0.00
$4 \rightarrow 6$	0.35	0.00	$4 \rightarrow 6$	0.39	0.00	$2A' \rightarrow 4A''$	0.38	0.00	2A'→3A"	0.35	0.07
$4 \rightarrow 7$	0.55	0.03	$4 \rightarrow 7$	0.59	0.08	$2A' \rightarrow 5A''$	0.59	0.08	$2A' \rightarrow 4A''$	0.69	0.01
$4 \rightarrow 8$	0.79	0.08	$4 \rightarrow 8$	0.78	0.01	$2A' \rightarrow 6A''$	0.78	0.02	$2A' \rightarrow 5A''$	0.95	0.03
$4 \rightarrow 9$	0.15	0.00	$4 \rightarrow 0$	0.10	0.54	$2\Lambda' \rightarrow 7\Lambda''$	0.10	0.52	$2\Lambda' \rightarrow 6\Lambda''$	0.00	0.00
$4 \rightarrow 3$ $4 \rightarrow 10$	0.01	0.05	4 - 3	0.00	0.94	$2\Lambda , 3\Lambda , 2\Lambda ,$	0.05	0.00	2Λ , 3Λ , 2Λ ,	1.02	4.00
$4 \rightarrow 10$ $4 \rightarrow 11$	0.00	0.00	$4 \rightarrow 10$	0.91	0.85	$2\Lambda \rightarrow 3\Lambda$	0.91	0.82	$2\Lambda - 3\Lambda$	1.02	4.30
$4 \rightarrow 11$ $4 \rightarrow 12$	1.09	0.00	$4 \rightarrow 11$	0.91	7.00	$2A \rightarrow 0A$	0.91	6.00	$2A \rightarrow 4A$ $2A' \rightarrow 7A''$	1.00	4.40
$4 \rightarrow 12$	1.00	0.01	$4 \rightarrow 12$	0.99	7.09	$2A \rightarrow 4A$	0.99	0.98	$2A \rightarrow iA$	1.11	0.22
$4 \rightarrow 13$	1.15	0.02	$4 \rightarrow 13$	1.18	0.02	$2A' \rightarrow 9A''$	1.18	0.04	$2A' \rightarrow 8A''$	1.19	0.00
$4 \rightarrow 14$	1.16	0.03	$4 \rightarrow 14$	1.19	0.04	$2A' \rightarrow 5A'$	1.18	0.02	$2A' \rightarrow 9A''$	1.47	0.46
$4 \rightarrow 15$	1.32	0.01	$4 \rightarrow 15$	1.36	0.01	$2A' \rightarrow 10A''$	1.35	0.01	$2A' \rightarrow 5A'$	1.49	0.58
$4 \rightarrow 16$	1.51	0.03	$4 \rightarrow 16$	1.54	0.16	$2A' \rightarrow 6A'$	1.53	0.16	$2A' \rightarrow 10A''$	1.73	0.29
$4 \rightarrow 17$	1.54	0.26	$4 \rightarrow 17$	1.57	0.00	2A'→11A"	1.57	0.00	$2A' \rightarrow 6A'$	1.74	0.27
$4 \rightarrow 18$	1.56	0.02	$4 \rightarrow 18$	1.60	0.04	2A'→12A"	1.59	0.04	2A'→11A"	1.79	0.08
$4 \rightarrow 19$	1.65	0.00	$4 \rightarrow 19$	1.65	0.83	$2A' \rightarrow 7A'$	1.64	0.83	$2A' \rightarrow 7A'$	1.90	0.64
$4 \rightarrow 20$	1.70	0.00	$4 \rightarrow 20$	1.69	0.35	2A'→13A"	1.68	0.32	$2A' \rightarrow 8A'$	1.92	0.49
$4 \rightarrow 21$	1.77	0.02	$4 \rightarrow 21$	1.79	0.29	$2A' \rightarrow 8A'$	1.78	0.19	$2A' \rightarrow 12A''$	1.95	0.01
$4 \rightarrow 22$	1.81	0.01	$4 \rightarrow 22$	1.82	1.82	$2A' \rightarrow 9A'$	1.82	2.07	2A'→9A'	2.00	0.38
$4 \rightarrow 23$	1.84	0.11	$4 \rightarrow 23$	1.85	0.00	$2A' \rightarrow 14A''$	1.85	0.00	2A'→13A"	2.02	0.00
$4 \rightarrow 24$	1.87	0.01	$4 \rightarrow 24$	1.88	0.77	$2A' \rightarrow 10A'$	1.88	0.78	$2A' \rightarrow 10A'$	2.07	1.10
$4 \rightarrow 25$	1.94	0.00	$4 \rightarrow 25$	1.91	0.15	$2A' \rightarrow 15A''$	1.90	0.17	2A'→14A"	2.09	0.00
$4 \rightarrow 26$	1.94	0.00	$4 \rightarrow 26$	1.97	0.01	2A'→16A"	1.96	0.01	$2A' \rightarrow 15A''$	2.13	0.02
$4 \rightarrow \overline{27}$	2.07	0.05	$4 \rightarrow 27$	$\frac{1}{2}$ 00	0.12	$2A' \rightarrow 11A'$	2.00	0.12	$2A' \rightarrow 11A'$	2 21	5 93
$4 \rightarrow 28$	2.01	0.03	$4 \rightarrow 28$	$\frac{2.00}{2.14}$	0.28	$2A' \rightarrow 12A'$	2.00	0.16	$2A' \rightarrow 16A''$	2 33	0.24
$4 \rightarrow 20$	2.11 2 14	0.00	$4 \rightarrow 20$	2.14 2.15	0.20	$2\Lambda^{\prime} \rightarrow 17\Lambda^{\prime\prime}$	2.10 2.14	0.10	$2\Lambda^{\prime} \rightarrow 12\Lambda^{\prime}$	$2.00 \\ 2.37$	0.24
$4 \rightarrow 20$	$2.14 \\ 2.91$	0.00	$4 \rightarrow 20$	$\frac{2.10}{2.16}$	1.82	$2\Lambda \rightarrow 17\Lambda$ $2\Lambda' \rightarrow 13\Lambda'$	2.14 2.16	1.68	$2\Lambda \rightarrow 12\Lambda$ $2\Lambda' \rightarrow 13\Lambda'$	2.57	1.01
$4 \rightarrow 50$	2.21	0.05	4 - 50	2.10	0.20	2A - 10A 2A' + 14A'	2.10	0.24	2A - 10A 2A' + 17A''	2.42	0.05
4 - 31	2.20	0.00	4 - 51	2.20	0.30	$2\Lambda \rightarrow 14\Lambda$ $2\Lambda' \rightarrow 18\Lambda''$	2.24	0.04	$2\Lambda \rightarrow 1/\Lambda$ $2\Lambda' \rightarrow 1/\Lambda$	2.40	0.05
$4 \rightarrow 32$	2.30	0.01	$4 \rightarrow 32$	∠ ೧.22	0.19	$2A \rightarrow 10A$ $2A' \rightarrow 15A'$	2.32	0.04	$2A \rightarrow 14A$ $2A' \rightarrow 18A''$	2.00	0.35
$4 \rightarrow 33$	2.32	0.00	$4 \rightarrow 33$	2.00	0.02	$2A \rightarrow 10A$ $2A' \rightarrow 10A''$	2.32	0.10	$2A \rightarrow 10A$ $2A' \rightarrow 15A'$	2.01	0.00
$4 \rightarrow 34$	2.39	0.01	$4 \rightarrow 34$	2.40	0.71	$2A \rightarrow 19A$ $2A' \rightarrow 16A'$	2.40	0.20	$2A \rightarrow 10A$ $2A' \rightarrow 10A''$	2.05	0.00
$4 \rightarrow 30$	2.41	0.00	$4 \rightarrow 50$	2.45	0.22	$2A \rightarrow 10A$	2.45	0.58	$2A \rightarrow 19A$	2.09	0.04
$4 \rightarrow 30$	2.41	0.05	$4 \rightarrow 30$	2.40	0.05	$2A \rightarrow 20A$	2.44	0.00	$2A \rightarrow 10A$	2.70	0.34
$4 \rightarrow 37$	2.40	0.01	$4 \rightarrow 37$	2.49	0.05	$2A \rightarrow 1/A$	2.49	0.06	$2A \rightarrow 20A$	2.10	0.10
$4 \rightarrow 38$	2.50	0.00	$4 \rightarrow 38$	2.52	0.50	$2A' \rightarrow 18A'$	2.52	0.37	$2A' \rightarrow 21A''$	2.11	0.00
$4 \rightarrow 39$	2.51	0.00	$4 \rightarrow 39$	2.54	0.04	$2A' \rightarrow 21A''$	2.52	0.05	$2A' \rightarrow 22A''$	2.83	0.00
$4 \rightarrow 40$	2.62	0.18	$4 \rightarrow 40$	2.63	0.41	$2A' \rightarrow 22A''$	2.61	0.16	$2A' \rightarrow 1'A'$	2.83	3.53
$4 \rightarrow 41$	2.63	0.03	$4 \rightarrow 41$	2.66	0.22	$2A' \rightarrow 19A'$	2.62	0.42	$2A' \rightarrow 18A'$	2.86	2.84
$4 \rightarrow 42$	2.63	0.61	$4 \rightarrow 42$	2.67	0.00	$2A' \rightarrow 23A''$	2.67	0.01	$2A' \rightarrow 23A''$	2.90	0.00
$4 \rightarrow 43$	2.65	0.00	$4 \rightarrow 43$	2.69	0.01	$2A' \rightarrow 24A''$	2.68	0.00	$2A' \rightarrow 19A'$	2.93	0.67
$4 \rightarrow 44$	2.70	0.00	$4 \rightarrow 44$	2.71	0.05	$2A' \rightarrow 20A'$	2.70	0.05	$2A' \rightarrow 24A''$	2.95	0.12
$4 \rightarrow 45$	2.71	0.00	$4 \rightarrow 45$	2.74	0.01	$2A' \rightarrow 25A''$	2.73	0.01	2A'→25A"	2.99	0.00
$4 \rightarrow 46$	2.80	0.00	$4 \rightarrow 46$	2.84	0.03				$2A' \rightarrow 20A'$	3.14	0.01
$4 \rightarrow 47$	2.83	0.05	$4 \rightarrow 47$	2.87	0.03						
$4 \rightarrow 48$	2.85	0.14	$4 \rightarrow 48$	2.89	0.05						
$4 \rightarrow 49$	2.90	0.00	$4 \rightarrow 49$	2.92	1.94						
$4 \rightarrow 50$	2.90	0.10	$4 \rightarrow 50$	2.94	0.00						
$4 \rightarrow 51$	2.91	3.15	$4 \rightarrow 51$	2.95	0.00						
$4 \rightarrow 52$	2.94	0.01	$4 \rightarrow 52$	2.98	0.00						
$4 \rightarrow 53$	2.99	0.04	$4 \rightarrow 53$	3.02	1.42						
$4 \rightarrow 54$	3.00	0.00	$4 \rightarrow 54$	3.03	0.04						
$4 \rightarrow 55$	3.00	0.00	$4 \rightarrow 55$	3.03	1.75						
$4 \rightarrow 56$	3.03	0.04	$4 \rightarrow 56$	3.04	0.14						
$4 \rightarrow 57$	3.07	0.01	$4 \rightarrow 57$	3.10	0.33						
$4 \rightarrow 58$	3.14	0.26	$4 \rightarrow 58$	3.13	2.70						
$4 \rightarrow 59$	3.14	0.00	$4 \rightarrow 59$	3.17	0.01						
$4 \rightarrow 60$	3.15	0.02	$4 \rightarrow 60$	3.19	0.33						

	Since Sint Guardiante Color and Sint Since Sint Since Sint Since Sint Sint Since Sint Since Sint Sint Sint Sint Sint Sint Sint Sint											
Trans.	$\omega [\mathrm{eV}]$	$f \times 100$	Trans.	$\omega [eV]$	$f \times 100$	Trans.	$\omega [\mathrm{eV}]$	$f \times 100$	Trans.	$\omega [\mathrm{eV}]$	$f \times 100$	
$0 \rightarrow 1$	4.814	0.30	$2 \rightarrow 3$	0.241	0.03	$4 \rightarrow 5$	0.100	0.00	$5 \rightarrow 6$	0.151	0.00	
$0 \rightarrow 2$	$5.027 L_{a}$	13.43	$2 \rightarrow 4$	0.485	0.59	$4 \rightarrow 6$	0.251	0.00	$5 \rightarrow 7$	0.357	0.00	
$0 \rightarrow 3$	5.268	0.43	$2 \rightarrow 5$	0.585	0.00	$4 \rightarrow 7$	0.456	0.12	$5 \rightarrow 8$	0.640	0.00	
$0 \rightarrow 4$	$5.512 L_b$	30.42	$2 \rightarrow 6$	0.736	0.00	$4 \rightarrow 8$	0.739	0.51	$5 \rightarrow 9$	0.645	0.01	
$0 \rightarrow 5$	5.612 $n\pi^*$	0.00	$2 \rightarrow 7$	0.942	0.00	$4 \rightarrow 9$	0.745	0.52	$5 \rightarrow 10$	0.768	0.00	
$0 \rightarrow 6$	5.763	0.08	$2 \rightarrow 8$	1.225	0.64	$4 \rightarrow 10$	0.868	5.98	$5 \rightarrow 11$	0.804	0.03	
$0 \rightarrow 7$	5.968	0.08	$2 \rightarrow 9$	1.230	0.03	$4 \rightarrow 11$	0.903	0.00	$5 \rightarrow 12$	0.853	0.02	
$0 \rightarrow 8$	6.252	0.38	$2 \rightarrow 10$	1.353	0.20	$4 \rightarrow 12$	0.952	0.72	$5 \rightarrow 13$	0.895	0.14	
$0 \rightarrow 9$	6.257	0.04	$2 \rightarrow 11$	1.389	0.01	$4 \rightarrow 13$	0.995	0.00	$5 \rightarrow 14$	0.967	0.00	
$0 \rightarrow 10$	6.380	2.13	$2 \rightarrow 12$	1.438	0.70	$4 \rightarrow 14$	1.066	0.03	$5 \rightarrow 15$	1.066	0.24	
$0 \rightarrow 11$	6.415	0.09	$2 \rightarrow 13$	1.480	0.01	$4 \rightarrow 15$	1.165	0.00	$5 \rightarrow 16$	1.110	0.00	
$0 \rightarrow 12$	6.464	1.12	$2 \rightarrow 14$	1.552	0.04	$4 \rightarrow 16$	1.210	0.01				
$0 \rightarrow 13$	6.507	0.12	$2 \rightarrow 15$	1.651	0.00							
$0 \rightarrow 14$	6.579	0.53	$2 \rightarrow 16$	1.695	0.03							
$0 \rightarrow 15$	6.678	0.00										
$0 \rightarrow 16$	6.722	0.03										

Table S24: Guanine. CC3/aug-cc-pVDZ ESA transition energies (ω) and oscillator strengths (f)

Table S25: Guanine: CCSD/aug-cc-pVDZ ESA transition energies (ω) and oscillator strengths (f)

Trans.	$\omega [\mathrm{eV}]$	$f \times 100$	Trans.	$\omega [eV]$	$f \times 100$	Trans.	$\omega [\mathrm{eV}]$	$f \times 100$	Trans.	$\omega [\mathrm{eV}]$	$f \times 100$
$0 \rightarrow 1$	4.965	0.30	$2 \rightarrow 3$	0.174	0.02	$4 \rightarrow 5$	0.005	0.00	$5 \rightarrow 6$	0.140	0.01
$0 \rightarrow 2$	$5.214 L_a$	16.62	$2 \rightarrow 4$	0.533	0.00	$4 \rightarrow 6$	0.145	0.00	$5 \rightarrow 7$	0.318	0.16
$0 \rightarrow 3$	5.388	0.54	$2 \rightarrow 5$	0.537	0.74	$4 \rightarrow 7$	0.323	0.00	$5 \rightarrow 8$	0.606	0.56
$0 \rightarrow 4$	5.747 $n\pi^*$	0.00	$2 \rightarrow 6$	0.677	0.00	$4 \rightarrow 8$	0.610	0.01	$5 \rightarrow 9$	0.610	0.39
$0 \rightarrow 5$	$5.751 L_b$	34.83	$2 \rightarrow 7$	0.855	0.00	$4 \rightarrow 9$	0.615	0.00	$5 \rightarrow 10$	0.903	9.34
$0 \rightarrow 6$	5.892	0.07	$2 \rightarrow 8$	1.143	0.02	$4 \rightarrow 10$	0.908	0.00	$5 \rightarrow 11$	0.903	0.00
$0 \rightarrow 7$	6.070	0.08	$2 \rightarrow 9$	1.147	0.60	$4 \rightarrow 11$	0.908	0.02	$5 \rightarrow 12$	0.965	0.07
$0 \rightarrow 8$	6.357	0.03	$2 \rightarrow 10$	1.440	0.40	$4 \rightarrow 12$	0.969	0.01	$5 \rightarrow 13$	1.025	0.00
$0 \rightarrow 9$	6.362	2.35	$2 \rightarrow 11$	1.441	0.01	$4 \rightarrow 13$	1.030	0.11	$5 \rightarrow 14$	1.047	0.48
$0 \rightarrow 10$	6.655	3.00	$2 \rightarrow 12$	1.502	0.06	$4 \rightarrow 14$	1.051	0.04	$5 \rightarrow 15$	1.140	0.01
$0 \rightarrow 11$	6.655	0.24	$2 \rightarrow 13$	1.562	0.02	$4 \rightarrow 15$	1.145	0.00	$5 \rightarrow 16$	1.239	0.03
$0 \rightarrow 12$	6.716	0.48	$2 \rightarrow 14$	1.584	0.66	$4 \rightarrow 16$	1.243	0.00	$5 \rightarrow 17$	1.261	0.52
$0 \rightarrow 13$	6.777	0.17	$2 \rightarrow 15$	1.677	0.03	$4 \rightarrow 17$	1.265	0.03	$5 \rightarrow 18$	1.413	0.36
$0 \rightarrow 14$	6.798	1.61	$2 \rightarrow 16$	1.776	0.02	$4 \rightarrow 18$	1.418	0.01	$5 \rightarrow 19$	1.547	0.83
$0 \rightarrow 15$	6.891	0.01	$2 \rightarrow 17$	1.798	0.02	$4 \rightarrow 19$	1.551	0.00	$5 \rightarrow 20$	1.571	2.84
$0 \rightarrow 16$	6.990	0.39	$2 \rightarrow 18$	1.950	0.02	$4 \rightarrow 20$	1.576	0.00	$5 \rightarrow 21$	1.636	0.36
$0 \rightarrow 17$	7.012	0.31	$2 \rightarrow 19$	2.084	0.27	$4 \rightarrow 21$	1.640	0.03	$5 \rightarrow 22$	1.638	0.54
$0 \rightarrow 18$	7.164	0.02	$2 \rightarrow 20$	2.108	0.30	$4 \rightarrow 22$	1.643	0.00	$5 \rightarrow 23$	1.685	0.02
$0 \rightarrow 19$	7.298	7.00	$2 \rightarrow 21$	2.173	0.04	$4 \rightarrow 23$	1.689	0.04	$5 \rightarrow 24$	1.726	0.00
$0 \rightarrow 20$	7.323	11.94	$2 \rightarrow 22$	2.175	0.07	$4 \rightarrow 24$	1.731	0.21	$5 \rightarrow 25$	1.844	0.75
$0 \rightarrow 21$	7.387	1.07	$2 \rightarrow 23$	2.222	0.00	$4 \rightarrow 25$	1.849	0.01	$5 \rightarrow 26$	1.882	1.42
$0 \rightarrow 22$	7.390	27.96	$2 \rightarrow 24$	2.264	0.01	$4 \rightarrow 26$	1.887	0.03	$5 \rightarrow 27$	1.884	0.34
$0 \rightarrow 23$	7.436	0.00	$2 \rightarrow 25$	2.382	3.22	$4 \rightarrow 27$	1.889	0.01	$5 \rightarrow 28$	1.942	0.00
$0 \rightarrow 24$	7.478	0.10	$2 \rightarrow 26$	2.419	2.04	$4 \rightarrow 28$	1.946	0.10	$5 \rightarrow 29$	1.955	0.35
$0 \rightarrow 25$	7.596	22.48	$2 \rightarrow 27$	2.421	0.17	$4 \rightarrow 29$	1.960	0.07	$5 \rightarrow 30$	2.023	0.22
$0 \rightarrow 26$	7.633	10.03	$2 \rightarrow 28$	2.479	0.01	$4 \rightarrow 30$	2.027	0.01			
$0 \rightarrow 27$	7.635	0.00	$2 \rightarrow 29$	2.492	0.10						
$0 \rightarrow 28$	7.693	1.00	$2 \rightarrow 30$	2.560	0.25						
$0 \rightarrow 29$	7.707	12.76									
$0 \rightarrow 30$	7.774	1.47									

Table S26: Guanine. CAM-B3LYP/aug-cc-pVDZ and CAM-B3LYP/6-31G* ESA transition energies (ΔE , eV) and oscillator strengths (f) from S_{1A'} (L_a) and S_{1A''} ($n\pi^*$) : (section 1) S_{1A'} (L_a) at CAM-B3LYP/aug-cc-pVDZ; (section 2) S_{1A'} (L_a) at CAM-B3LYP/6-31G*; (section 3) S_{1A"} ($n\pi^*$) at CAM-B3LYP/aug-cc-pVDZ, (section 4) S_{1A"} ($n\pi^*$) at CAM-B3LYP/6-31G*

$S_{1A'}$	A' (L _a) aDZ		$S_{1A'}$ (L _a) 6-31G*		$S_{1A"}$ $(n\pi^*)$ aDZ		DΖ	$S_{1A"}(n\pi^*)$ 6-31G*			
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$
$1A' \rightarrow 2A''$	0.31	0.03	1A'→1A"	0.30	0.00	$1A" \rightarrow 1A'$	0.09	0.02	$1A" \rightarrow 2A'$	0.23	0.00
$1A' \rightarrow 2A'$	0.44	0.48	$1A' \rightarrow 2A'$	0.53	0.46	$1A" \rightarrow 2A"$	0.40	10.44	$1A" \rightarrow 2A"$	0.88	0.05
$1A' \rightarrow 3A''$	0.46	0.00	1A'→2A"	1.18	0.00	$1A" \rightarrow 2A'$	0.53	0.57	$1A" \rightarrow 3A"$	0.91	0.17
$1A' \rightarrow 4A''$	0.82	0.00	1A'→3A"	1.20	0.01	$1A" \rightarrow 3A"$	0.55	0.04	$1A" \rightarrow 4A"$	1.24	0.01
$1A' \rightarrow 5A''$	1.03	0.00	$1A' \rightarrow 4A''$	1.54	0.00	$1A" \rightarrow 4A"$	0.91	18.61	$1A^{"}\rightarrow 3A^{'}$	1.37	0.00
1A'→6A"	1.22	0.00	$1A' \rightarrow 3A'$	1.66	1.12	$1A" \rightarrow 5A"$	1.11	3.08	$1A" \rightarrow 5A"$	1.60	0.27
1A'→7A"	1.27	0.01	$1A' \rightarrow 5A''$	1.90	0.00	$1A" \rightarrow 6A"$	1.31	0.00	$1A'' \rightarrow 4A'$	1.87	0.00
$1A' \rightarrow 3A'$	1.35	0.73	$1A' \rightarrow 4A'$	2.17	0.18	$1A" \rightarrow 7A"$	1.36	0.04	$1A" \rightarrow 6A"$	1.93	0.13
1A'→8A"	1.35	0.01	1A'→6A"	2.22	0.00	$1A" \rightarrow 3A'$	1.43	18.90	$1A" \rightarrow 7A"$	1.97	0.00
$1A' \rightarrow 4A'$	1.43	0.36	$1A' \rightarrow 7A''$	2.27	0.00	$1A'' \rightarrow 8A''$	1.44	0.01	$1A'' \rightarrow 5A'$	2.12	0.00
1A'→9A"	1.62	0.03	$1A' \rightarrow 5A'$	2.42	1.37	$1A'' \rightarrow 4A'$	1.52	1.33	$1A" \rightarrow 6A'$	2.19	0.00
$1A' \rightarrow 5A'$	1.62	0.48	$1A' \rightarrow 6A'$	2.49	1.42	$1A'' \rightarrow 9A''$	1.70	1.18	$1A'' \rightarrow 8A''$	2.34	0.01
$1A' \rightarrow 10A''$	1.79	0.03	$1A' \rightarrow 8A''$	2.64	0.00	$1A'' \rightarrow 5A'$	1.71	0.00	$1A'' \rightarrow 7A'$	2.37	0.00
$1A' \rightarrow 6A'$	1.97	0.03	$1A' \rightarrow 7A'$	2.66	0.10	$1A'' \rightarrow 10A''$	1.87	9.07	$1A'' \rightarrow 9A''$	2.50	0.05
$1A' \rightarrow 11A''$	2.01	0.00	$1A' \rightarrow 9A''$	2.79	0.01	$1A'' \rightarrow 6A'$	2.06	0.07	$1A'' \rightarrow 10A''$	2.67	0.00
$1A' \rightarrow 12A''$	2.03	0.00	$1A' \rightarrow 10A''$	2.96	0.00	$1A'' \rightarrow 11A''$	2.10	0.21	$1A'' \rightarrow 8A'$	2.75	0.00
$1A' \rightarrow 7A'$	2.08	0.08	$1A' \rightarrow 8A'$	3.05	6.18	$1A'' \rightarrow 12A''$	2.11	1.33	$1A'' \rightarrow 9A'$	2.91	0.00
$1A' \rightarrow 13A''$	2.12	0.00	$1A' \rightarrow 9A'$	3.21	0.88	$1A'' \rightarrow 7A'$	2.17	0.14	$1A'' \rightarrow 11A''$	3.15	1.96
$1A' \rightarrow 8A'$	2.22	0.02	$ 1A' \rightarrow 11A'' $	3.44	0.00	$1A'' \rightarrow 13A''$	2.21	3.46	$1A'' \rightarrow 12A''$	3.19	0.68
$1A' \rightarrow 9A'$	2.26	0.17	$1A' \rightarrow 12A''$	3.48	0.00	$1A'' \rightarrow 8A'$	2.31	0.17	$1A'' \rightarrow 10A'$	3.31	0.00
$1A' \rightarrow 14A''$	2.29	0.00	$1A' \rightarrow 10A'$	3.60	1.73	$1A'' \rightarrow 9A'$	2.34	2.71	$1A'' \rightarrow 13A''$	3.36	0.81
$1A \rightarrow 10A$	2.32	2.24	$1A \rightarrow 13A''$	3.66	0.00	$1A'' \rightarrow 14A''$	2.38	0.02	$1A'' \rightarrow 14A''$	3.43	0.01
$1A' \rightarrow 15A''$	2.34	0.02	$1A' \rightarrow 14A''$	3.72	0.00	$1A'' \rightarrow 10A''$	2.41	0.00	$1A'' \rightarrow 11A'$	3.52	0.00
$1A' \rightarrow 16A''$	2.40	0.00	$1A' \rightarrow 11A'$	3.82	0.10	$1A'' \rightarrow 15A''$ $1A'' \rightarrow 16A''$	2.43	2.51	$1A'' \rightarrow 12A''$	3.53	0.00
$1A \rightarrow 11A$	2.44	0.17	$1A \rightarrow 12A$	3.83	2.80	$1A^{\circ} \rightarrow 10A^{\circ}$	2.49	0.33	$1A^{"} \rightarrow 15A^{"}$ $1A^{"} \rightarrow 1CA^{"}$	3.00	0.00
$1A \rightarrow 12A$ $1A' \rightarrow 17A''$	2.07	0.13	$1A^{\prime} \rightarrow 15A^{\prime\prime}$ $1A^{\prime} \rightarrow 16A^{\prime\prime}$	3.94	0.00	$1A^{"} \rightarrow 11A^{"}$	2.33	0.47	$1A^{"} \rightarrow 10A^{"}$ $1A^{"} \rightarrow 12A^{"}$	3.70	0.00
$1A \rightarrow 1/A$ $1A' \rightarrow 12A'$	2.00	0.19	$1A \rightarrow 10A$ $1A' \rightarrow 12A'$	3.99	0.00	$1A \rightarrow 12A$ $1A^{"} \rightarrow 17A^{"}$	2.00	0.00	$1A \rightarrow 15A$ $1A'' \rightarrow 17A''$	3.60	0.00
$1A \rightarrow 13A$ $1A' \rightarrow 14A'$	2.00	0.05	$1A \rightarrow 13A$ $1A' \rightarrow 17A''$	4.10 4.41	0.45	$1A \rightarrow 1/A$ $1A'' \rightarrow 12A'$	2.07	0.30	$1A \rightarrow 1/A$ $1A'' \rightarrow 18A''$	4.12 4.17	0.11
$1A \rightarrow 14A$ $1A' \rightarrow 18A''$	2.00 2.76	0.13	$1A \rightarrow 17A$ $1A' \rightarrow 18A''$	4.41	0.00	$1A \rightarrow 13A$ $1A^{"} \rightarrow 14A^{"}$	2.09	0.00	$1A^{\prime} \rightarrow 10A^{\prime}$	4.17	0.00
1A' > 16A'	2.70	0.00	$1A^{-710A}$	4.40	0.00	$1\Lambda \rightarrow 14\Lambda$ $1\Lambda^{"} \rightarrow 19\Lambda^{"}$	2.11	2.66	$1\Lambda \rightarrow 14\Lambda$ $1\Lambda^{"} \rightarrow 15\Lambda^{"}$	4.10	0.00
$1A' \rightarrow 10A''$	2.70	0.08	$1A' \rightarrow 14A'$	4.47	0.01	$1A^{,} \rightarrow 15A^{,}$	2.84	0.00	$1A^{"} \rightarrow 10A^{"}$	4.41	0.00
$1A' \rightarrow 16A'$	2.04	1.48	$1 \Lambda' \rightarrow 10 \Lambda$ "	4.71	0.14	$1A^{"} \rightarrow 10A^{"}$	2.00	3 51	$1A^{"} \rightarrow 16A^{"}$	4.53	0.00
$1A' \rightarrow 20A''$	2.01	0.01	$1A' \rightarrow 16A'$	4.11	0.02	$1A" \rightarrow 16A'$	2.35	0.13	$1A" \rightarrow 10A"$	4.50	0.00
$1\Lambda' \rightarrow 17\Lambda'$	2.00	0.01	$1 \Lambda' \rightarrow 20 \Lambda''$	4.00	0.11	$1A^{"} \rightarrow 20A^{"}$	2.35	0.13	$1A^{"} \rightarrow 17A^{"}$	4.03	0.47
$1A' \rightarrow 18A'$	$\frac{2.35}{2.96}$	0.05	$1A' \rightarrow 17A'$	4.05	0.02 0.11	$1A" \rightarrow 17A'$	3.01	0.05	$1A^{"} \rightarrow 21A^{"}$	4.67	0.00
$1\Delta' \rightarrow 21\Delta''$	2.00	0.00	$1\Delta' \rightarrow 21\Delta''$	4.07	0.00	$1\Delta^{,\prime} \rightarrow 18\Delta^{,\prime}$	3.04	0.02	$1\Delta^{"} \rightarrow 18\Delta^{"}$	4.73	0.01
$1A' \rightarrow 22A''$	3.05	0.00	$1A' \rightarrow 18A'$	5.03	0.00	$1A^{"} \rightarrow 21A^{"}$	3.05	3 55	$1A^{"} \rightarrow 22A^{"}$	4 76	0.01
$1A' \rightarrow 19A'$	3.06	2.21	$1A' \rightarrow 22A''$	5.00	0.00	$1A^{"} \rightarrow 22A^{"}$	3 14	1.05	$1A^{"} \rightarrow 19A^{'}$	4.80	0.00
$1A' \rightarrow 23A''$	3 11	0.10	$1A' \rightarrow 19A'$	5.00	0.09	$1A^{,*} \rightarrow 19A^{,*}$	3 15	0.08	$1A^{"} \rightarrow 20A^{'}$	4 92	0.00
$1A' \rightarrow 24A''$	3.12	0.02	$1A' \rightarrow 20A'$	5.21	0.07	$1A^{"} \rightarrow 23A^{"}$	3.20	0.44	$1A^{"} \rightarrow 23A^{"}$	5.02	0.00
$1A' \rightarrow 20A'$	3.14	0.89	$1A' \rightarrow 23A''$	5.31	0.00	$1A" \rightarrow 24A"$	3.20	0.47	$1A" \rightarrow 24A"$	5.14	0.00
$1A' \rightarrow 25A''$	3.17	0.00	$1A' \rightarrow 24A''$	5.44	0.00	$1A" \rightarrow 20A'$	3.22	ŏ.ōo	$1A" \rightarrow 25A"$	5.19	0.01
			$1A' \rightarrow 25A''$	5.49	0.11	$1A" \rightarrow 25A"$	3.26	0.38			

SS4.5 ESA from $\pi\pi^*$

Cytosine			Thymine			Adenine			Guanine		
Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$	Trans.	ΔE	$f \times 100$
$\rightarrow 1A$ "	0.84	0.00	$\rightarrow 1A$ "	0.63	0.00	$\rightarrow 1A$ "	0.45	0.00	$\rightarrow 2A'$	0.55	0.77
$\rightarrow 2A'$	0.90	1.44	$\rightarrow 2A$ "	1.32	0.43	$\rightarrow 2A'$	0.64	0.50	$\rightarrow 1A$ "	0.55	0.03
$\rightarrow 2A$ "	0.98	0.00	$\rightarrow 2A'$	1.75	0.47	$\rightarrow 2A$ "	0.81	0.03	$\rightarrow 2A$ "	1.02	0.19
$\rightarrow 3A$ "	1.60	0.17	$\rightarrow 3A'$	1.87	2.22	$\rightarrow 3A$ "	1.32	0.40	$\rightarrow 3A$ "	1.26	0.00
$\rightarrow 4 A$ "	1.74	0.00	$\rightarrow 3A$ "	1.89	0.04	$\rightarrow 4$ A"	1.48	0.05	$\rightarrow 4 A$ "	1.35	0.00
$\rightarrow 3A'$	2.01	0.27	$\rightarrow 4A$	1 92	0.00	$\rightarrow 5A$ "	1.51	0.61	$\rightarrow 5A$ "	1 61	0.11
$\rightarrow 5A$ "	$\frac{1}{2}$ 08	0.00	$\rightarrow 5A$ "	2.05	0.19	$\rightarrow 3A'$	1 66	9.78	$\rightarrow 6A$ "	1 62	0.00
$\rightarrow 6A$	$\frac{2.00}{2.27}$	0.06	$\rightarrow 4A$	2 39	0.15	$\rightarrow 6A$ "	1 70	0.00	$\rightarrow 3A^{\prime}$	1.66	0.18
$\rightarrow 4 \mathbf{A}^{\prime}$	2.21	0.00	$\rightarrow 6A$ "	$\frac{2.55}{2.56}$	0.10	$\rightarrow 4A$	1.88	0.60	$\rightarrow 4A^{\prime}$	$1.00 \\ 1.74$	1 20
$\rightarrow 7\Delta$	2.20 2.41	0.11	$\rightarrow 7\Lambda$ "	$2.00 \\ 2.75$	0.00	$\rightarrow 7\Lambda$ "	1.80	0.00	$\rightarrow 7\Delta$ "	1.74 1.76	0.00
51,	2.41 2.40	0.08	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.10	0.20	<u>8</u> ,	2.01	0.00		1.70	0.00
-3Λ	2.49	0.95	-5Λ	2.00	0.00	-5A	2.01 2.07	0.02	$\rightarrow 0A$	$2.00 \\ 2.14$	0.00
$\rightarrow oA$	2.14	0.01	$\rightarrow 0A$	2.00	0.01	$\rightarrow 3A$	2.07	0.05	$\rightarrow 9A$	2.14	0.08
$\rightarrow 0A$	2.01	0.51	$\rightarrow 9A$	2.90	0.01	$\rightarrow 9A$	2.21	0.14	$\rightarrow 10A$	2.44	0.00
$\rightarrow 9A^{\circ}$	2.87	0.01	$\rightarrow 10A^{\circ}$	3.07	0.00	$\rightarrow 0A'$	2.24	3.97	$\rightarrow 3A$	2.00	0.51
$\rightarrow 10A$	2.93	0.03	$\rightarrow 0A$	3.13	0.85	$\rightarrow 10A$	2.34	0.01	$\rightarrow 11A$	2.00	0.00
$\rightarrow 11A''$	3.02	0.21	$\rightarrow (A)$	3.24	0.23	$\rightarrow (A)$	2.38	0.27	$\rightarrow 0A$	2.60	2.66
$\rightarrow 12A''$	3.12	0.49	$\rightarrow 11A''$	3.24	0.02	$\rightarrow 11A''$	2.84	0.00	$\rightarrow (A)$	2.65	0.36
$\rightarrow (A)$	3.16	0.53	$\rightarrow 8A'$	3.27	0.73	$\rightarrow 8A'$	2.85	0.05	$\rightarrow 8A'$	2.73	0.59
$\rightarrow 8A'$	3.26	2.97	$\rightarrow 9A'$	3.47	0.64	$\rightarrow 12A''$	2.87	0.01	$\rightarrow 12A''$	2.75	0.01
$\rightarrow 9A'$	3.28	4.05	$\rightarrow 12A''$	3.57	0.02	$\rightarrow 9A'$	2.89	0.11	$\rightarrow 13A''$	2.80	0.01
$\rightarrow 13A''$	3.31	0.00	$\rightarrow 10A'$	3.65	0.38	$\rightarrow 10A'$	2.92	0.22	$\rightarrow 9A'$	2.87	0.40
$\rightarrow 10A'$	3.36	0.94	$ \rightarrow 13A''$	3.67	0.05	$\rightarrow 13A''$	2.92	0.55	$\rightarrow 10A'$	2.88	0.23
$\rightarrow 14$ A"	3.59	0.07	$\rightarrow 11A'$	3.72	6.46	$\rightarrow 11A'$	3.08	0.16	$\rightarrow 14$ A"	2.94	0.00
$\rightarrow 15$ A"	3.60	0.00	$\rightarrow 14A$ "	3.78	0.15	$\rightarrow 14A$ "	3.13	0.04	$\rightarrow 15$ A"	3.01	0.05
$\rightarrow 11A'$	3.63	1.79	$ \rightarrow 12A'$	3.91	0.08	$ \rightarrow 15A$ "	3.18	0.11	$\rightarrow 11A'$	3.04	0.18
$\rightarrow 16A$ "	3.73	0.00	$\rightarrow 15A$ "	3.94	0.09	$\rightarrow 16A$ "	3.21	0.01	$\rightarrow 12A'$	3.09	0.18
$\rightarrow 12A'$	3.80	0.06	$\rightarrow 16A$ "	3.95	0.04	$\rightarrow 12A'$	3.24	0.64	$\rightarrow 16A$ "	3.11	0.00
$\rightarrow 17$ A"	3.88	0.03	$\rightarrow 17$ A"	4.04	0.00	$\rightarrow 17A$ "	3.27	0.35	$\rightarrow 13A'$	3.24	0.05
$\rightarrow 13A'$	3.90	0.08	$\rightarrow 18$ A"	4.07	0.01	$\rightarrow 13A'$	3.38	0.74	$\rightarrow 17$ A"	3.41	0.00
$\rightarrow 14A'$	3.94	0.00	$\rightarrow 19A$ "	4.12	0.00	$\rightarrow 14A'$	3.45	0.03	$\rightarrow 18$ A"	3.43	0.00
$\rightarrow 15A'$	4.05	0.24	$\rightarrow 13A'$	4.14	0.41	$\rightarrow 18A$ "	3.48	0.05	$\rightarrow 14A'$	3.47	5.27
$\rightarrow 16A'$	4.08	5.84	$\rightarrow 20 \text{A}$ "	4.15	0.01	$\rightarrow 15A'$	3.51	0.29	$\rightarrow 19A$ "	3.48	0.04
$\rightarrow 18$ A"	4.09	0.00	$\rightarrow 14A'$	4.34	0.92	$\rightarrow 19A$ "	3.51	0.01	$\rightarrow 15A'$	3.53	0.72
$\rightarrow 19A$ "	4.18	0.03	$\rightarrow 15A'$	4.37	1.11	$\rightarrow 20 \text{A}$ "	3.58	0.00	$\rightarrow 16A'$	3.59	1.78
$\rightarrow 17A'$	4.19	0.93	$\rightarrow 21 \text{A}$ "	4.43	0.58	$\rightarrow 16A'$	3.62	0.05	$\rightarrow 20$ Å"	3.60	0.00
$\rightarrow 20 \text{ Å}$ "	4.25	0.02	$\rightarrow 16A'$	4.46	12.62	$\rightarrow 21 \text{A}$ "	3.66	0.02	$\rightarrow 21 \text{ A}$ "	3.64	0.02
$\rightarrow 18A'$	4.30	33.29	$\rightarrow 22 \text{ Å}$	4.53	0.00	$\rightarrow 17A'$	3.75	0.97	$\rightarrow 22 \text{A}$ "	3.75	0.00
$\rightarrow 19A'$	4.37	256.39	$\rightarrow 17A'$	4 53	125 71	$\rightarrow 22A$ "	3 75	0.01	$\rightarrow 17A$	3 76	0.06
$\rightarrow 21 \text{ A}$ "	4 43	0.02	$\rightarrow 23 \text{ Å}$	4 54	0.07	$\rightarrow 18A'$	3.87	0.01	$\rightarrow 18A^{\prime}$	3.80	0.16
$\rightarrow 22 \text{Å}$	4.52	0.01	$\rightarrow 18A^{,}$	4.54	62 43	$\rightarrow 23A$ "	3.89	0.06	$\rightarrow 23$ Å"	3.82	0.10
$\rightarrow 23 \text{Å}$	4 52	0.01	$\rightarrow 24 \text{ Å}$	4 62	0.00	$\rightarrow 24$ Å"	3 92	0.00	$\rightarrow 24 \text{ Å}$	3.84	0.00
$\rightarrow 20 A$ "	4.52	0.01	$\rightarrow 10^{4}$	4.65	0.00	$\rightarrow 10\Lambda$	3.05	0.25 0.47	$\rightarrow 25 \Delta$ "	3 02	0.03
-24A	4.09	0.00	300^{19}	4.00	0.24 8.01	25A"	3.90	0.47	10A	3.32	0.01
-20A	4.00	0.11	25A"	4.12	0.01	-720Λ	4.05	0.00	20A	J.33 4 01	0.00
$\rightarrow 20A$	4.03	0.10	$\rightarrow 20 A$	4.05	0.05	$\rightarrow 20A$	4.00	0.05	$\rightarrow 20 A$	4.01	2.40
$\rightarrow 20A$	4.70	0.04									

Table S27: ESA from the 1A' state at $\pi\pi^*$ minima. CAM-B3LYP/aug-ccpVDZ excitation energies (ΔE , eV) and oscillator strengths (f) for Cytosine, Thymine, Adenine, Guanine.

Figure S23: CAMB3LYP/aug-cc-pVDZ ESA in solution computed, at the non-equilibrium level, applying PCM in chloroform from $\pi\pi^*$ state at the $\pi\pi^*$ -minima for four nucleobases. A vertical dashed line indicates the estimated value of the first ionization energy in the excited state for ESA. This was obtained as difference of the IE of the ground state and the energy of $\pi\pi^*$ state. Structures were optimised in gas-phase.

Figure S24: Guanine. OPA and ESA computed at CAMB3LYP/aug-cc-pVDZ level of theory. A vertical dashed line indicates the first ionisation energy for OPA and the estimated value of the first ionisation energy in the excited state for ESA, obtained as IE of the ground state minus the energy of 1π and 1n.

References

- Vishal K. Jaiswal, Javier Segarra-Martí, Marco Marazzi, Elena Zvereva, Xavier Assfeld, Antonio Monari, Marco Garavelli, and Ivan Rivalta. First-principles characterization of the singlet excited state manifold in dna/rna nucleobases. *Phys. Chem. Chem. Phys.*, 22:15496–15508, 2020.
- [2] Gábor Bazsó, György Tarczay, Géza Fogarasi, and Péter G. Szalay. Tautomers of cytosine and their excited electronic states: a matrix isolation spectroscopic and quantum chemical study. *Phys. Chem. Chem. Phys.*, 13:6799–6807, 2011.

- [3] Krzysztof Polewski, David Zinger, John Trunk, Denise C. Monteleone, and John C. Sutherland. Fluorescence of matrix isolated guanine and 7-methylguanine. *Journal of Photochemistry and Photobiology B: Biology*, 24(3):169–177, 1994.
- [4] Francisco J. Avila Ferrer, Javier Cerezo, Emiliano Stendardo, Roberto Improta, and Fabrizio Santoro. Insights for an accurate comparison of computational data to experimental absorption and emission spectra: Beyond the vertical transition approximation. J. Chem. Theory Comput., 9:2072–2082, 2013.
- [5] Leigh B. Clark, Gary G. Peschel, and Ignacio Tinoco. Vapor spectra and heats of vaporization of some purine and pyrimidine bases. J. Phys. Chem., 69(10):3615–3618, 1965.
- [6] Katharina Röttger, Hugo J. B. Marroux, Arséne F. M. Chemin, Emma Elsdon, Thomas A. A. Oliver, Steven T. G. Street, Alexander S. Henderson, M. Carmen Galan, Andrew J. Orr-Ewing, and Gareth M. Roberts. Is uv-induced electron-driven proton transfer active in a chemically modified a t dna base pair? J. Phys. Chem. B, 121(17):4448–4455, 2017. PMID: 28394602.
- [7] Katharina Röttger, Hugo J. B. Marroux, Michael P. Grubb, Philip M. Coulter, Hendrik Böhnke, Alexander S. Henderson, M. Carmen Galan, Friedrich Temps, Andrew J. Orr-Ewing, and Gareth M. Roberts. Ultraviolet absorption induces hydrogen-atom transfer in gc watson-crick dna base pairs in solution. Angew. Chem. Int. Ed., 54(49):14719–14722, 2015.
- [8] A. T. B. Gilbert, N. A. Besley, and P. M. W. Gill. Self-consistent field calculations of excited states using the maximum overlap method (mom). J. Phys. Chem. A, 112:13164–13171, 2008.