Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Supplementary Information

Origins of the Photoinitiation Capacity of Aromatic Thiols As Photoinitiators: A Computational Study

Volkan Fındık*^{a,b}, Basak Koca Fındık ^c, Viktorya Aviyente ^c, Antonio Monari*,^{a,d}

^a Université de Lorraine, CNRS, LPCT, F54000 Nancy, France

^b Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722 Istanbul,

Turkey

^c Department of Chemistry, Bogazici University, 34342, Bebek, Istanbul ^d Université de Paris and CNRS, ITODYS, F-75006, Paris

Corresponding author: volkan.findik@marmara.edu.tr, antonio.monari@univ-lorraine.fr

Table of Contents

1-	Assesing the Level of Theory	2
2-	Spin-Orbit Coupling Constants	2
3-	Natural Transition Orbitals	3
4-	Potential Energy Surfaces of Aromatic Thiols Relaxed from T1 State	4
5-	Coordinates	5

1- Assesing the Level of Theory

Table S1. Calculated absorption wavelength in DMSO by using the ground state geometry sampling based on the Wigner distribution, compared with the experimental UV/Vis data in DMSO.

	λ _{abs} Values of Molecules					
TDA-TDDFT Method	RSH		PhSH		<i>p</i> -CF₃PhSH	
τHCTHhyb/def2-TZVP	200nm	6.19eV	265nm	4.67eV	256nm	4.84eV
ωB97XD/def2-TZVP	210nm	5.90eV	243nm	5.10eV	260nm	4.76eV
Experimental Data ^{1*}	260nm	4.76eV	278nm	4.45eV	272nm	4.55eV

1 Love, D. M.; Fairbanks, B. D.; Bowman, C. N. Evaluation of Aromatic Thiols as Photoinitiators. Macromolecules 2020, 53, 13, 5237–5247 *Experimental data obtained in DMSO solvent.

2- Spin-Orbit Coupling Constants

Table S2. Spin Orbit Coupling Constants (cm⁻¹) of S₀ minimum geometries by ω B97X-D3/def2-TZVP in DMSO (ORCA Software).

Molecule	S1-T1	S1-T2	S1-T3	S1-T4	S2-T1	S2-T2	S2-T3	S2-T4
Hexanethiol	2.10	51.22	151.65	8.33	45.43	1.39	19.55	5.71
Thiophenol	5.25	116.42	20.50	3.04	3.67	1.83	0.50	2.57
paratrifluorothiophenol	1.01	0.10	0.37	0.02	17.63	2.06	6.74	0.50

Molecule	S3-T1	S3-T2	S3-T3	S3-T4
Hexanethiol	16.54	8.73	6.83	0.57
Thiophenol	20.90	19.31	5.42	6.28
paratrifluorothiophenol	0.28	0.63	0.15	0.83

Table S3. Spin Orbit Coupling Constants (cm⁻¹) of S₁ minimum geometries by ωB97X-D3/def2-TZVP in DMSO (ORCA Software).

Molecule	S1-T1	S1-T2	S1-T3	S1-T4	S2-T1	S2-T2	S2-T3	S2-T4
Hexanethiol	1.98	128.62	144.02	69.27	142.77	91.44	26.78	6.90
Thiophenol	5.25	116.42	20.50	3.04	3.67	1.83	0.50	2.57
paratrifluorothiophenol	0.98	0.27	0.30	0.01	0.18	0.71	0.13	0.76

Molecule	S3-T1	S3-T2	S3-T3	S3-T4
Hexanethiol	82.48	36.77	65.94	5.57

Thiophenol	20.90	19.31	5.42	6.28
paratrifluorothiophenol	18.34	4.37	8.07	0.25

3- Natural Transition Orbitals

Table S4. Natural transition orbitals of RSH molecule at critical distances (ω B97XD/def2-TZVP level of theory)

Table S5. Natural transition orbitals of PhSH molecule at critical distances (ω B97XD/def2-TZVP level of theory)

	oNTO	vNTO
Distance= 1.31 S ₀ to S ₁ f= 0.0700 4.5791 eV $\phi_s(Mul.)= 0.5442$ $\phi_s(Löw.)=$ 0.5708		

4- Potential Energy Surfaces of Aromatic Thiols

Figure S1. Potential energy surface of thiophenol (S₀: Blue, T₁: Light Red) and parafluorothiophenol (S₀: Gray, T₁: Dark Red) relaxed on the T1 potential at ω B97XD/def2-TZVP level of theory,in DMSO (SMD).

Figure S2. SF-TDDFT potential energy surface, relaxed on the S1 surface, of thiophenol relaxed scan at ω B97X/TZ2P level of theory.

5- Coordinates

Optimized geometry of RSH

С	4.304951	-0.425636	-0.000001
Η	4.325107	-1.070612	0.882706
Η	5.222046	0.167759	-0.000004
Η	4.325106	-1.070619	-0.882703
С	3.068250	0.461333	-0.000004
Η	3.088545	1.117096	-0.876615
Η	3.088549	1.117107	0.876598
С	1.767986	-0.332749	0.000004
Η	1.746571	-0.989132	0.877369
Η	1.746568	-0.989146	-0.877351
С	0.524938	0.547397	-0.000001
Н	0.544369	1.202304	-0.877860

Η	0.544371	1.202316	0.877850
С	-0.771240	-0.254843	0.000006
Η	-0.795519	-0.906350	0.879344
Η	-0.795523	-0.906358	-0.879326
С	-1.994974	0.647283	0.000004
Η	-1.997759	1.283518	-0.885212
Η	-1.997758	1.283522	0.885217
S	-3.513784	-0.363052	0.000008
Η	-4.394283	0.648041	0.000007
Opt	timized geom	netry of PhSI	H
С	-0.929629	0.859289	-0.000823
С	-0.232449	-0.340814	0.003320
С	1.153740	-0.348444	0.003287
С	1.856431	0.854161	-0.000925
С	1.159967	2.059418	-0.005084
С	-0.226917	2.055812	-0.005012
S	3.624302	0.779421	-0.000739
Η	-0.768628	-1.282011	0.006616
Η	1.686540	-1.292369	0.006544
Η	1.695671	3.001133	-0.008381
Η	-0.759069	2.999371	-0.008270
Η	-2.012407	0.861875	-0.000785
Η	3.845894	2.102234	-0.005367

Optimized geometry of *p*-CF₃PhSH

С	-0.224657	-0.354678	0.100752
С	1.158119	-0.349434	0.106011
С	1.858152	0.852190	0.012080
С	1.146524	2.048579	-0.087145
С	-0.233365	2.036943	-0.091596

С	-0.928080	0.836351	0.002164
Η	-0.760057	-1.291197	0.174034
Η	1.699248	-1.283560	0.183671
Η	1.676343	2.989506	-0.160786
Η	-0.778943	2.969207	-0.168777
S	3.612498	0.788562	0.024168
Η	3.814005	2.108271	-0.079763
С	-2.422627	0.862794	-0.005681
F	-2.914848	1.593332	1.012676
F	-2.906838	1.418934	-1.132095
F	-2.958759	-0.360164	0.091577