Supporting Information for

Theoretical insights into volatile iodine adsorption onto COF-DL229

Dayin Tong^a, Yaolin Zhao^{a,*}, Zhongcun Chen^a, Yuqi Wang^a, Ziqi Jia^a, Xiaomeng Nie^a, Songtao Xiao^b

^a: School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an

710049, P. R. China

^b: China Institute of Atomic Energy, Beijing 102413, P. R. China

*Corresponding author: zhaoyaolin@mail.xjtu.edu.cn

Totally 6 pages including 5 Tables, 3 Figures, and 2 Equations.

Figure S1. The 1×1×2 supercell of COF-DL229 with different display settings. (Pages S3)

Figure S2. The skeleton structures comparison before and after iodine adsorption. (Pages S4)

Figure S3. The corresponding partial structure of the I-N bond at IM site in vertical mode. (Pages S5)

Table S1. Adsorption energies and structural parameters of I₂ adsorption onto COF-DL229 while the structure of COF-DL229 was fixed. (Pages S3)

Table S2. Total energies of various adsorption sites under the condition of that all atoms are relaxed or the skeletons atoms are fixed. (Pages S3)

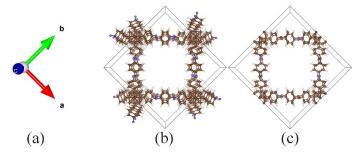

Table S3. The distances between iodine molecules before and after adsorption onto COF-DL229. (Pages S3)

Table S4. The specific data of deformation energies, interaction energies, and their contributions to adsorption energies of each site in different modes. (Pages S5)

Table S5. The energies of HOMO, LUMO, and Energy Gap corresponding to the clean COF-DL229 and different adsorption configurations. (Pages S5)

Equations. The computational equations of COHP and ICOHP. (Pages S6)

References. (Pages S6)

Fig. S1 The 1×1×2 supercell with boundary line displayed with attached atoms near the boundary (b) and without atoms beyond boundary (c). (a) is the coordinate axis. The N, C, and H atoms are shown in blue, brown, and white, respectively.

Table S1 Adsorption energies (E_{ads}, eV) and structural parameters (Å) of I₂ adsorption onto COF-DL229. COF-DL229 was fixed.

	Site	E_{ads}	E_{disp}	Δd	I-I	I-N	I-C
IM	vertical	-0.55	-0.40	0	2.74	2.91	
	parallel	-0.55	-0.40	0	2.74	2.89	
РН	vertical	-0.56	-0.41	0	2.74	2.90	
	parallel	-0.55	-0.40	0	2.74	2.89	
CO	vertical	-0.46	-0.41	0	2.70		3.32/3.72
СО	parallel	-0.37	-0.40	0	2.68		3.98/4.11

Table S2 Total energies (E_{tot}, eV) and adsorption energies (E_{ads}, eV) of various adsorption sites under the condition of that all atoms are relaxed or the skeletons atoms are fixed.

Site		All atoms are re	laxed	Skeleton atoms are fixed	
		E_{tot}	$E_{ads}{}^{a} \\$	E_{tot}	E_{ads}^{a}
IM	vertical	-2534.38	-8.75	-2526.18	-0.55
	parallel	-2534.01	-8.38	-2526.18	-0.55
PH	vertical	-2534.38	-8.75	-2526.19	-0.56
	parallel	-2534.53	-8.90	-2526.18	-0.55
CO	vertical	-2534.89	-9.26	-2526.09	-0.46
СО	parallel	-2534.67	-9.04	-2526.00	-0.37

 $^{^{\}rm a}$: the total energies of clean COF-DL229 and I_2 molecule are -2522.97 and -2.66 eV, respectively.

Table S3 The distances (Å) between I₂ molecules before and after adsorption onto COF-DL229.

Site		I ₂ distance (before)	I ₂ distance (after)	
IM	vertical	14.85	13.76	
	parallel	14.00	13.86	
PH	vertical	14.85	13.66	
	parallel	13.55	14.25	
СО	vertical	14.85	12.90	
	parallel	12.17	13.56	

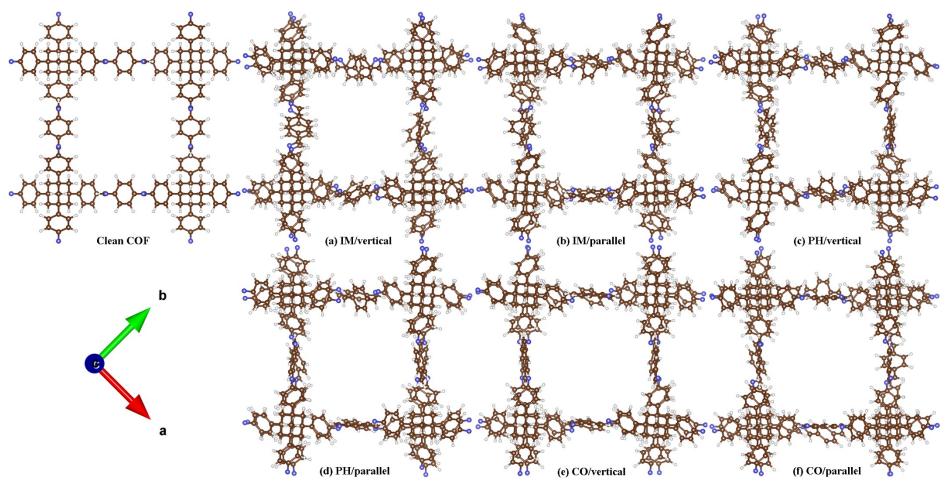
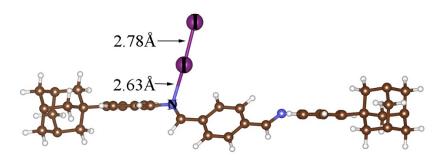



Fig. S2 The skeleton structures comparison before (Clean COF) and after adsorption (a-f). The N, C, and H atoms are shown in blue, brown, and white, respectively.

Table S4 The specific data of deformation energies, interaction energies, and their contributions to adsorption energies of each site in different modes.

Site		E_{ads}	$E_{def}(COF)^a$	$E_{def}(I_2)^a$	$E_{int}(I_2/COF)^a$
IM	vertical	-8.75	-7.91/90.40%	0.04/-0.46%	-0.88/10.06%
	parallel	-8.38	-7.94/94.75%	0.00/0.00%	-0.44/5.25%
PH	vertical	-8.75	-7.94/90.74%	0.04/-0.46%	-0.85/9.71%
	parallel	-8.90	-8.29/93.15%	0.01/-0.11%	-0.62/6.97%
CO	vertical	-9.26	-8.69/93.84%	0.01/-0.11%	-0.58/6.26%
	parallel	-9.04	-8.15/90.15%	0.02/-0.22%	-0.91/10.07%

 $^{^{\}mathrm{a}}$: The X of X/Y denotes the energy, whereas the Y denotes the percentage contributed to adsorption energy.

Fig. S3 The corresponding partial structure of the I-N bond at IM site in vertical mode. The N, C, H, and I atoms are shown in blue, brown, white, and purple, respectively.

Table S5 The energies of HOMO, LUMO, and Energy Gap corresponding to the clean COF-DL229 and different adsorption configurations. The unit is eV.

Configuration	E(HOMO)	E(LUMO)	$\mathrm{E}_{\mathrm{gap}}$
COF-DL229	-0.58	2.68	3.26
$I_2@IM$	-0.54	1.17	1.71
$I_2@PH$	-0.58	0.77	1.35
I ₂ @CO	-0.67	0.84	1.51

Equations

The integrated crystal orbital Hamilton population (ICOHP) is calculated by the energy integral up to the highest occupied bands. The specific computational equation of ICOHP is given below [1].

$$COHP_{\mu\nu}(E, \mathbf{k}) = \sum_{j} R \left[P_{\mu\nu j}^{(proj)}(k) H_{\nu\mu}^{(proj)}(k) \right] \times \delta(\varepsilon_{j}(k) - E)$$

$$ICOHP(\varepsilon_F) = \int_{-\infty}^{\varepsilon_F} COHP(E) dE$$

References

[1] V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets, The Journal of Physical Chemistry A 115 (2011) 5461-5466.