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GPR framework

We present a brief review of the GPR method adopted from Reference .**2 We denote the
observation locations as X = {z@}Y, (2 € D, D C R?) and the observed values of the
Qol at these locations as y = (y,y®, ..., y™)T (y@ € R). For simplicity, we assume
that y® are scalars. The GPR method aims to identify a GP Y (z,w) : D x  — R based
on the input/output data set {(z®,y®)}N,, where Q is the sample space of a probability

triple. Here, & can be considered as parameters for this GP, such that Y(x,-) : 2 - Ris a
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Gaussian random variable for any @ in the set D. A GP Y (z,w) is usually denoted as
V() ~ GP (u(x), k(z, x')) (1)

where w is not explicitly listed for brevity, u(-) : D — R and k(-,-) : D x D — R are the

mean and covariance functions (also called kernel function), respectively:

plx) = E{Y (x)}, (2)

k(w,2') = Cov{Y (z),Y(2)} = E{(Y(2) — u(z))(Y(2) — p(z))} . (3)

The variance of Y (x) is k(x,x), and its standard deviation is o(x) = \/k(x,x). The
covariance matrix, denoted as C, is defined as C;; = k(x®, ). For any * € D, the GPR

prediction and variance are

J(x*) = p(x*) + e(z*) ' C ™y — ), (4)

(x*) = o*(x*) — c(z*) C e(x"), (5)

where c(x*) is a vector of covariance: (c(x*)); = k(z™,z*). Here 8%(x*) is also called
the mean squared error (MSE) of the prediction because §*(x*) = E{(y(z*) — Y (x*))?}.%
Consequently, §(x*) is called the root mean squared error (RMSE).

In practice, it is common to assume that p(x) is a constant function, i.e., u(x) = p. Also,
the most widely used kernels in scientific computing are the Matérn functions, especially its
two special cases, i.e., exponential and squared-exponential (Gaussian) kernels. For example,
the Gaussian kernel can be written as k(7) = o?exp (—3||z — @'||2), where the weighted

d
norm is defined as ||z — /|2, = Z (xl —_ x;)Z Here, I; (¢ = 1,...,d), the correlation

l;
i=1
lengths in the 7 direction, are constants.

In the GPR method with graph kernel, the mean and covariance functions p(x) and

k(x,x’) are obtained by identifying their hyperparameters via maximizing the log marginal



likelihood L*

1 _ 1 N
1nL:—§(y—p,)TC 1(y—u)—§ln]C]—§ln27r. (6)

Moreover, to account for the observation noise, one can assume that the noise is inde-
pendent and identically distributed (i.i.d.) Gaussian random variables with zero mean and
variance 42, and replace C' with C + 6*I. In this study, we assume that observations y
are noiseless. If C is not invertible or its condition number is very large, one can add a
small regularization term o (« is a small positive real number) to C, which is equivalent
to assuming there is an observation noise. In addition, § can be used in global optimization,
or in the greedy algorithm to identify locations of additional observations.

Given a stationary covariance function, the covariance matrix C' can be written as C =
o?W, where U;; = exp(—1[|x¥ — 2U)||2). The estimators of y and o2, denoted as fi and 62,

are

ﬂ _ 1T\I’_1y 5_2 — (y - 1:&)T\I’_1(y - ]-ﬂ) (7)
1Tw-11’ m ’

where 1 is a constant vector consisting of 1s,% m is the total number of samples. It is also
common to set g = 0.” The hyperparameters o and [; are identified by maximizing the log
marginal likelihood in Eq. (6). The terms g(z*) and §*(z*) in Eq. take the following

form:

g(@) =+ ey — 1p), (8)

Pla) =0 (1- 9 U '), (9)

where 9 = 1(x*) is a (column) vector consisting of correlations between the observed data

and the prediction, i.e., 1; = C%k:(a:(i), x*).

References

(1) Abrahamsen, P. A review of Gaussian random fields and correlation functions. 1997.



(2) Forrester, A.; Keane, A.; Sobester, A. Engineering Design via Surrogate Modelling: A
Practical Guide; John Wiley & Sons, 2008.

(3) Williams, C. K.; Rasmussen, C. E. Gaussian processes for machine learning; MIT press

Cambridge, MA, 2006; Vol. 2.



