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GPR framework

We present a brief review of the GPR method adopted from Reference .1,2 We denote the

observation locations as X = {x(i)}Ni=1 (x(i) ∈ D,D ⊆ Rd) and the observed values of the

QoI at these locations as y = (y(1), y(2), . . . , y(N))> (y(i) ∈ R). For simplicity, we assume

that y(i) are scalars. The GPR method aims to identify a GP Y (x, ω) : D × Ω → R based

on the input/output data set {(x(i), y(i))}Ni=1, where Ω is the sample space of a probability

triple. Here, x can be considered as parameters for this GP, such that Y (x, ·) : Ω→ R is a
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Gaussian random variable for any x in the set D. A GP Y (x, ω) is usually denoted as

Y (x) ∼ GP (µ(x), k(x,x′)) , (1)

where ω is not explicitly listed for brevity, µ(·) : D → R and k(·, ·) : D × D → R are the

mean and covariance functions (also called kernel function), respectively:

µ(x) = E {Y (x)} , (2)

k(x,x′) = Cov {Y (x), Y (x′)} = E {(Y (x)− µ(x))(Y (x′)− µ(x′))} . (3)

The variance of Y (x) is k(x,x), and its standard deviation is σ(x) =
√
k(x,x). The

covariance matrix, denoted as C, is defined as Cij = k(x(i),x(j)). For any x∗ ∈ D, the GPR

prediction and variance are

ŷ(x∗) = µ(x∗) + c(x∗)>C−1(y − µ), (4)

ŝ2(x∗) = σ2(x∗)− c(x∗)>C−1c(x∗), (5)

where c(x∗) is a vector of covariance: (c(x∗))i = k(x(i),x∗). Here ŝ2(x∗) is also called

the mean squared error (MSE) of the prediction because ŝ2(x∗) = E {(ŷ(x∗)− Y (x∗))2}.2

Consequently, ŝ(x∗) is called the root mean squared error (RMSE).

In practice, it is common to assume that µ(x) is a constant function, i.e., µ(x) ≡ µ. Also,

the most widely used kernels in scientific computing are the Matérn functions, especially its

two special cases, i.e., exponential and squared-exponential (Gaussian) kernels. For example,

the Gaussian kernel can be written as k(τ ) = σ2 exp
(
−1

2
‖x− x′‖2w

)
, where the weighted

norm is defined as ‖x − x′‖2w =
d∑
i=1

(
xi − x′i
li

)2

. Here, li (i = 1, . . . , d), the correlation

lengths in the i direction, are constants.

In the GPR method with graph kernel, the mean and covariance functions µ(x) and

k(x,x′) are obtained by identifying their hyperparameters via maximizing the log marginal
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likelihood L3

lnL = −1

2
(y − µ)>C−1(y − µ)− 1

2
ln |C| − N

2
ln 2π. (6)

Moreover, to account for the observation noise, one can assume that the noise is inde-

pendent and identically distributed (i.i.d.) Gaussian random variables with zero mean and

variance δ2, and replace C with C + δ2I. In this study, we assume that observations y

are noiseless. If C is not invertible or its condition number is very large, one can add a

small regularization term αI (α is a small positive real number) to C, which is equivalent

to assuming there is an observation noise. In addition, ŝ can be used in global optimization,

or in the greedy algorithm to identify locations of additional observations.

Given a stationary covariance function, the covariance matrix C can be written as C =

σ2Ψ, where Ψij = exp(−1
2
‖x(i) −x(j)‖2w). The estimators of µ and σ2, denoted as µ̂ and σ̂2,

are

µ̂ =
1>Ψ−1y

1>Ψ−11
, σ̂2 =

(y − 1µ̂)>Ψ−1(y − 1µ̂)

m
, (7)

where 1 is a constant vector consisting of 1s,2 m is the total number of samples. It is also

common to set µ = 0.3 The hyperparameters σ and li are identified by maximizing the log

marginal likelihood in Eq. (6). The terms ŷ(x∗) and ŝ2(x∗) in Eq. (4) take the following

form:

ŷ(x∗) = µ̂+ψ>Ψ−1(y − 1µ̂), (8)

ŝ2(x∗) = σ̂2
(
1−ψ>Ψ−1ψ

)
, (9)

where ψ = ψ(x∗) is a (column) vector consisting of correlations between the observed data

and the prediction, i.e., ψi = 1
σ2k(x(i),x∗).
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