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1 The details of replace the molecule in clusters

To use the QVP method, the essential step is to replace the molecule you study in the traject-
ory with the isolated one, or say, to replace it with the un-perturbed one. Considering the fact
that motions you do not directly study, even when the motion is an intramolecular one, should
be considered as the ‘environment’, this kind of replacement is not that straight forward.

To replace the in-cluster molecule with the isolated one, we need the following steps.

1. Translate and rotation;

2. Project the IR-active vibration out;

3. Add the vibrating coordinates in;

4. Rotate and translate back.

Let us define the symbols first. Cartesian coordinates of the atoms in N -atom the chromo-
phore are denoted by R and the equilibrium geometry Re. The i th normal mode coordinate is
written as Qi and we have

R = Re +
3N∑
i=1

Qi ·ξi , (1)

where ξi stands for the i th normal mode’s vector. For in-trajectory molecule, R′ is used to de-
note Cartesian coordinates. xi , yi , zi and x ′

i , y ′
i , z ′

i are used to describe the Cartesian coordinate
in three orthogonal orientations of the i th atom. Note that the R and its ‘friends’ are all column
vectors.

First, we define the translation vector. Calculate centre of mass for the in-cluster molecule

α′
COM =

∑
i miα

′
i∑

i mi
(α= x, y, z). (2)
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and the translation t can be easily defined as

t = (x ′
COM, y ′

COM, z ′
COM, x ′

COM, y ′
COM, z ′

COM, . . . , x ′
COM, y ′

COM, z ′
COM, . . . , x ′

COM, y ′
COM, z ′

COM︸ ︷︷ ︸
3N

)T. (3)

Then, rotation. Here, we follow the Kabsch algorithm. The main idea is introduced as follow.
Consider we have two molecular structures with a little bit deformation, say X and Y, in

Cartesian coordinates, with their centres of mass as the origins. For convenience, X and Y are
N ×3 matrices, corresponding to equilibrium structure and the one in MD trajectory respect-
ively. Note that in this document, N ×M means that the matrix has N rows and M columns. In
FORTRAN, we write such matrix as

REAL*8::X(N,M)

for example, whose multiplication can be treated using MATMUL() function in FORTRAN. There-
fore, the covariance matrix C is written

C = YTdiag(m)X (4)

and it is a 3×3 matrix, where m is vector formed by atomic masses. Further, you get the square
of C, C2

C2 = CTC. (5)

C2 is then a real symmetry matrix. Diagonalize it, you get the eigenvectors, which form a 3×3
matrix A′, and eigenvalue λi (i = 1,2,3). Sort the eigenvectors with their corresponding eigen-
values decreasing. Let us call the matrix formed by the sorted eigenvectors A. To deal with plane
molecules, we let column vectors in A obey A3 = A1 ×A2 to deal with plane molecules. Then we
calculate

B′ = CA. (6)

Normalize B′ to get B. Generally, column vectors in B should obey B3 = B1 ×B2. The rotation
matrix is then

Û = BAT, (7)

which can operate on XT

X′T = Û XT (8)

to minimize sRMSD of the two structures, which reads

sRMSD =
( 1

N

N∑
i=1

d 2
i

)1/2
, (9)

where
di = [(Yi x −X′

i x)2 + (Yi y −X′
i y )2 + (Yi z −X′

i z)2]1/2. (10)

That is all for rotation. Note that Û is an orthogonal matrix, which obeys

ÛÛT = ÛTÛ = I. (11)

Notice again that the rotation operator is a 3×3 matrix. It is easy to write it as a 3N ×3N
matrix. However, in order to consist with the literature and for the elegance of mathematics,
we perform all the rotation in X and Y and the vibration in R and its ‘prime versions’. In this
document, for elegance, I will omit all the X ↔ R conversion. In FORTRAN, use the following
codes to complete this

2



X=TRANSPOSE(RESHAPE(R,(/3,N/)))

and

R=RESHAPE(TRANSPOSE(X),(/3*N/))

To project the studying motion ξs out, the in-cluster molecule is first moved to the isolated
molecule’s place and then perform the projection. We have

R′′ = ÛT(R′− t). (12)

Also, we have the displacement coordinate

∆R′′ = R′′−Re, (13)

and the so-called mass-weighted version of displacement coordinate ∆R̃′′ got from multiplyp
mi to the i th atom’s displacement. Then project the motion studied ξs out,

∆′R̃′′ =∆R̃′′− [ξ̃Ts ∆R̃′′] · ξ̃s (14)

to make sure the ‘environment’ motions remains untouched and the motion we want to use
QVP to deal with fix to Qe

s . Note that all symbols with a tilde mean the mass-weighted ones. After
that we have to add the motion back (in quantum mechanics picture, or in this case, PODVR
grids). We have the j th PODVR grid

R′′′
j = Re +∆′R′′+ r j ·ξs. (15)

The final in-cluster coordinate then be

R′′′′
j = Û R′′′

j + t, (16)

and is used to replace the one in trajectory.
Some comments should be made to the method presented here. Readers may have noticed

that all steps described here are reversible. Therefore, this method honestly represents the mo-
lecule’s shape and position in clusters. The reason why we do not use vibration modes directly
is that the linear normal mode is not a good way to represent the rotation, which may lead to
mistakes.

2 Optimized geometry and normal modes

We optimized the formic acid monomer at the CCSD(T)-F12b/cc-pVTZ-F12 level, and ob-
tained the equilibrium structure Rch

e of formic acid (in Table S1) and the corresponding C O
stretching vibration mode (in Table S3). The atomic numbers in all Tables corresponds to those
appearing in Figure S1. (The digits of the coordinates and wave function in the tables are de-
rived from the direct output of the software package, and do not represent significant digits)

3



Figure S1: Optimized HCOOH · H2O cluster structure. In this cluster, the configuration of the
formic acid molecule is similar to the optimized formic acid monomer, both are a trans struc-
tures.

Table S1: Optimized geometry of formic acid (HCOOH) at CCSD(T)-F12b/cc-pVTZ-F12 level.
All coordinates are in Ångström (Å).

Atom x y z

C1 1.4826235247 −1.4520071867 −0.0446257725
H1 2.4244170923 −2.0075890921 −0.0121827777
O1 1.3879588299 −0.2599719683 −0.1374121039
O2 0.4449603033 −2.3006934343 0.0347312820
H2 −0.3580224001 −1.7622451186 0.0019663721

Table S2: Optimized geometry of formic acid (HCOOH) at M06-2X/cc-pVTZ level. All coordin-
ates are in Ångström (Å).

Atom x y z

C1 1.4835555453 −1.4473187601 −0.0436571479
H1 2.4222899324 −2.0102853903 −0.0138699138
O1 1.3908564621 −0.2624006979 −0.1370812894
O2 0.4491978524 −2.2929588309 0.0368125088
H2 −0.3639624422 −1.7695431208 0.0002728423
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Table S3: C O stretching mode of optimized formic acid (HCOOH) at CCSD(T)-F12b/cc-pVTZ-
F12 level.

Atom x y z

C1 −0.00556 0.22037 −0.01730
H1 −0.17962 −0.03326 0.00479
O1 0.01325 −0.14714 0.01144
O2 −0.00290 −0.02319 0.00186
H2 0.08166 0.11273 −0.00988

a Coordinate unit is Å.

3 PODVR grids number

In the QVP method, in order to describe the vibration potential energy curve of the reference
state with fewer grid points, we use the PODVR method. Of course, the more DVR grids are used,
the more accurate the description of the potential energy curve is. However, this will greatly
increase the computational cost. Therefore, we need to test the optimal number of DVR points
for different systems, minimize the number of DVR grids with little impact to the results.

We used different DVR grid numbers to describe the C O stretching vibration potential en-
ergy curve of the formic acid molecule, and solved the one-dimensional Schrödinger equation
to obtain the vibration frequencies under different numbers of grid points, the results are shown
in Table S4 and Figure S2.

Table S4: When the QVP method takes the different number of DVR grids, the change of the
instantaneous frequency of the reference structure is displayed by the red line in Figure S2.

DVR grid number Energy

4 1799.12
5 1801.05

10 1801.24
20 1801.12
50 1801.12

a energy unit is cm−1.

From the Figure S2 and Table S4 we can find that as the number of DVR grid points increas-
ing, the vibration frequency results show a convergence trend, but Figure S2 also shows that
when we take the DVR grid number = 4, compared to the DVR grid number = 5, The results have
changed a lot, which shows that we can use 5 DVR grids to minimize the computational cost
without large changes in results. The vibrational wave function represented by these five points
is shown in Table S5.

5



Figure S2: Convergence of energy level calculation. We took different DVR grid numbers
on the instantaneous C O stretching vibration frequency of formic acid molecule to solve
Schrödinger equation. The black dots in the figure indicate the instantaneous vibration fre-
quency of the reference state structure corresponding to the number of DVR grids, and the red
line indicates the change tendency.

Table S5: The wave function of C O stretching vibration mode at every PODVR grid.

Qs Excited State Ground State

−0.1180160891 −0.2172508959 0.0583506568
−0.0636952246 −0.6413992163 0.3497844921
−0.0161991993 −0.2398865269 0.7055062850

0.0298278461 0.5741734451 0.5882891718
0.0791020874 0.3926683112 0.1744211629

a Coordinate unit is Å.

4 Cluster structures

To test if the “low level" method to predict molecular structure without ruining the accuracy
of geometry. Geometry of HCOOH · H2O was optimized on both CCSD(T)-F12b/cc-pVTZ-F12
and M06-2X/cc-pVTZ levels. Using Kabcsh algorithm, and calculated the RMSD between two
structure, the two origin optimized structures are showed in Table S6 and Table S7.

Table S8: Two different methods are used to optimize the HCOOH · H2O cluster, the length of
the formic acid C O and the length of the hydrogen bond formed by the C O bond with water.
All coordinates are in Ångström (Å).

CCSD(T)-F12 M06-2X

C O length 1.21059 1.20554
Hydrogen Bond length 2.00636 1.99504
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Table S6: Optimized geometry of HCOOH · H2O at CCSD(T)-F12b/cc-pVTZ-F12 level.

Atom x y z

C1 1.6197332722 −1.4959643224 −0.0206650281
H1 2.4568729330 −2.1963955523 0.0515307383
O1 1.7631206488 −0.2981000190 −0.1211101101
O2 0.4596824978 −2.1360723417 0.0178478629
H2 −0.2580401616 −1.4672154548 −0.0500799754
O3 −0.9814177867 0.1502011128 −0.2880238968
H3 −0.0769771926 0.4934408753 −0.2350044172
H4 −1.4983330778 0.6583531852 0.3392124344

a Coordinate unit is Å.

Table S7: Optimized geometry of HCOOH · H2O at M06-2X/cc-pVTZ level.

Atom x y z

C1 1.6144990944 −1.4881421303 0.0048732240
H1 2.4353736910 −2.2007950786 0.1366264820
O1 1.7803073014 −0.3023234405 −0.1279903870
O2 0.4494996732 −2.1077109507 0.0087877793
H2 −0.2638862480 −1.4370942826 −0.1197338018
O3 −0.9785525055 0.1420284511 −0.3989909107
H3 −0.0809019340 0.5069553710 −0.3785222551
H4 −1.4716979394 0.5953295435 0.2880439014

a Coordinate unit is Å.

5 The vibrational relaxation time

To estimate the relaxation time T1, time-dependent perturbation theory (Fermi’s Golden
Rule) is utilized. The quantum mechanical vibrational population relaxation rate T −1

i j from state
j to state i is

T −1
i j = ℏ−2

∫ ∞

−∞
dt exp

(
iωi j t

)〈Vi j (t )V j i (0)〉. (17)

Similarly to the line shape theory, in this work, its semi-classical approximation is used instead

T −1
i j = A(ωi j )ℏ−2

∫ ∞

−∞
dt exp

(
iωi j t

)〈V cl
i j (t )V cl

j i (0)〉. (18)

In formulae above, ωi j is the radian frequency difference between the two states, and Vi j is the
off-diagonal element of the full Hamiltonian, or simplified as

V cl
i j = 〈ϕi |V̂ ′|ϕ j 〉

=
∫

dQs ϕ
∗
i (Qs)V ′(Qs ; t )ϕ j (Qs),

(19)

and the A(ωi j ) is the Quantum Correction Function (QCF). In this work, we take the approx-
imation that relaxation from the first vibrational excited state to the ground state dominates
(T1 ≈ T01).

7



Practical problems during the computation, however, prevent us from getting a reliable
T1 numerically.Different schemes of QCF can be selected, while the result may differ by ∼ 70
times(Table S7). Getting a “correct” QCF is as difficult as to perform a nuclear quantum dynam-
ics simulation,which is practically unaffordable. The high-frequency noise from a numerical
simulation is also one of the difficulties in this study. To get a meaningful result, the function
log10 T cl

01(ω01) is firstly smoothed and then the value at ω01 = 1767cm−1 is taken from the full
spectrum. In conclusion, T1 of the value 7.76ps is obtained with the Schofield QCF. Due to the
factors discussed above, this value is only taken as an initial guess of T1.

Table S9: Value of different Quantum Correction Function.

QCF Type Value of QCF Reference

None 1.00 -
Standard 2.00 Ref1–3

Harmonic/Schofield 24.22 Ref4–6
Harmonic 8.47 Ref2, 7–9
Schofield 69.21 Ref10

Bader 4.24 Ref7
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