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I. Ab initio potential

Fig. S1 shows the 2D ab initio potential in the TS normal mode space. In each Q1-Qx potential plot, all other
coordinates are fixed at 0 (their TS value). The corresponding plot with the DGEVB+ potential is given in Fig. 5 of
the manuscript. Overlaid on the contours are the full-dimensional IRC path projected onto these 2D subspaces. Along
the transfer mode, that these paths terminate far from the 2D minimum |Q1| is expected as the EQM value of |Q1|
is approximately twice as large. Note, however, that the IRC end point values of Q7, Q13, and Q27 are close to their
2D minimum positions, indicating their weak coupling to the transfer mode and overall lower energetic importance.
Contrariwise, the IRC end points of Q5, Q10 and Q29 are further away. These deviations indicate again the modes’
importance as well as the multidimensional nature of the tunneling.
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FIG. S1. Two-dimensional contours of the ab initio potential. The contour spacing is 100 cm−1. A common contour colour bar
is provided on the top right that indicates the energy range covered.

II. Sudden vector projection

The sudden vector projection method1 gives the projection of each equilibrium mode on the imaginary frequency
mode at the TS. Larger projections indicate the importance of the corresponding equilibrium mode to tunneling. Most

TABLE S1. Sudden vector projection of each EQM mode on to Q1.

Mode Sym |k1 j| Mode Sym |k1 j| Mode Sym |k1 j| Mode Sym |k1 j|
Q1 A′′ 0.0000 Q10 A′′ 0.0000 Q18 A′ 0.1078 Q26 A′ 0.0540
Q2 A′′ 0.0000 Q11 A′ 0.0320 Q19 A′ 0.0036 Q27 A′ 0.0879
Q3 A′ 0.6123 Q12 A′′ 0.0000 Q20 A′ 0.2333 Q28 A′ 0.2430
Q4 A′′ 0.0000 Q13 A′′ 0.0000 Q21 A′ 0.0027 Q29 A′ 0.0118
Q5 A′ 0.0381 Q14 A′′ 0.0000 Q22 A′ 0.3274 Q30 A′ 0.0109
Q6 A′′ 0.0000 Q15 A′′ 0.0000 Q23 A′ 0.2020 Q31 A′ 0.0079
Q7 A′ 0.0235 Q16 A′ 0.0445 Q24 A′ 0.1169 Q32 A′ 0.0013
Q8 A′ 0.0044 Q17 A′ 0.0350 Q25 A′ 0.2273 Q33 A′ 0.4328
Q9 A′′ 0.0000
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recently in the work on tropolone by Houston et al.,2 it was used to succesfully predict the set of equilibrium modes
that can enhance tunneling. In the present case, it is computed as |k1 j| from the expression Q1 = Q1(xeqm)+ k1 jQ j;
see also Eq. 3 of Wang and Bowman.3 Its values given below in Table S1 point to modes Q3, Q33 and the set of modes
Q20−Q28 as those that promote tunneling. In TS mode terms, these map (Section 2.2.2 of the manuscript) to Q1,
Q10, and Q29, which are key modes for the tunneling process in catecholate monoanion.

III. Eigenstates with unrelaxed potentials

The multidimensional nature of the H-atom tunneling was shown in Section 2.1 of the manuscript through both the
significant sizes of displacements along seven modes – Q1, Q5, Q7, Q10, Q13, Q27, and Q29 – and also the observation
that a very large fraction of the full barrier height is recovered when only these modes move from their EQM to
TS positions. Here, we explore the structure of eigenstates in various n = 2, 3 and 4 mode spaces with unrelaxed
potentials (i.e. all other modes are fixed to zero.)

For various such Snu mode spaces, the eigenstates were obtained via the PODVR approach; see Section 3.1 of the
manuscript. In particular Table 5 of the manuscript gives the number of PODVR functions used for various coordinates
(in parentheses in the last column). In 2D, however, the direct product size with primitives is small enough to make
a direct comparison of eigenvalues obtained with them and with the corresponding PODVR direct product basis. In
doing so, e.g. for the 2D Q1-Q10, Q1-Q5, and Q1-Q29 eigenstates, we found the energy difference to be less than 1
cm−1 for most states with energy less than 5000 cm−1. With these encouraging results, we have used PODVRs for 3D
and 4D calculations. Note that the basis sizes shown in parentheses in the Table 5 are the final sizes that were taken
for multidimensional calculations. The convergence of all multidimensional calculations were checked with slightly
lower basis sizes after the states were characterized; these are also given in several tables below.

A. 2D eigenstates

Several past works have analysed the role of coupling strength, frequency and symmetry in multidimensional
tunneling using simple model potentials.4–8 For catecholate monoanion, we present below the eigenstates in various
S2u = (Q1,Qx) spaces with unrelaxed potentials. The characterisation of the eigenstates reveals the role of Qx in
enhancing or suppressing tunneling upon mode-specific vibrational excitation. We emphasize that the focus is not on
tunneling splitting magnitudes for the anion (which cannot be compared to any experiments from these 2D results)
but rather just their trends with identifiable excitations/assignments. The present results should be treated as the first
step to higher dimensional eigenstates in unrelaxed mode-spaces discussed in later sections in this ESI as well as the
manuscript (7D).

1. Q1-Q10 Eigenstates

The CO scissor Q10 is strongly coupled to Q1. The effective minimum of the DGEVB+ potential in this 2D space is
about −960 cm−1 (the full minimum is about −1568 cm−1). The first few eigenstates in Q1-Q10 subspace are given in
Table S2 while their plots are given in Fig. S2. The convergence of these states is given in Table S3.

The descriptions in the table immediately indicate the mixed nature of most of the listed states. The lowest two are
the ground tunneling pair ν±gs eigenstates; see Figs. S2a and b. The ground state tunneling splitting is about 241 cm−1.
This large value is owing to the reduced barrier compared to the full dimensional case; as the number of dimensions
is increased the ground state tunneling splitting does decrease systematically.

The description for state M = 3 (of even parity) is still dominated by the 10+100, while that of M = 4 (of odd parity)
is mostly of 10−101 character. However, plots c and d in Fig. S2 for these states show that there is one node along Q10
for both with no node and one node along Q1, respectively. This supports the labels ν

+
10 and ν

−
10 for them. Similarly,

nodal patterns for plots of state pairs (5, 6), (7, 9) and (10, 11) allow their assignment as nν
±
10, n = 2−4. However,

this identification is not easily seen from the state descriptions. This may be attributed to the strong coupling between
the two modes.

We finally note that the (8, 14) pair in Table S2 sees the dominance of the 11±100 in the description, prompting
their assignment as ν

±
1 . These are supported by their plots in parts k and l of Fig. S2; their nodal pattern clearly show

eigenstates with one quantum of excitation along Q1.

We now turn to the pattern of tunneling splittings. The increase from the ν±gs pair to the ν
±
1 pair is the expected trend
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along the tunneling coordinate Q1. With increasing Q10 excitation, the tunneling splitting also increases significantly,
i.e. it promotes tunneling. Recall that Q10 is the CO symmetric scissor (A1) motion which brings the two oxygen
atoms closer. Excitations in this mode bring about increased probability density on the concave side of the IRC path.
This region has been recognised to have the tunneling path in the literature for the large curvature tunneling cases
involving symmetrically coupled modes.9,10

TABLE S2. Two-dimensional eigenstates in Q1-Q10 subspace, their description, assignment, and tunneling splittings. They
are listed in tunneling split pairs as seen from the labels including (±) parity. M is a serial index. Each state eigenvalue EM (relative
to the TS energy) and excitation energy Eex

M (relative to M = 1) are given, along with a description in terms of direct products of 1D
eigenbases. Only those direct products with a contribution (squared coefficient) of 5% or more are listed. The tunneling splitting
value ∆ is given for each identified pair. All energies are in cm−1.

M Label EM Eex
M ∆ Description

1 ν+
gs 192.1 0.0 +0.7111 10+100 +0.3949 10+101 +0.2847 11+101 +0.2702 10+102 +0.2265 11+102

2 ν−gs 434.0 241.9 241.9 +0.9318 10−100
3 ν

+
10 617.6 425.5 +0.6632 10+100 −0.3432 10+101 −0.2710 10+102 −0.2674 11+102 +0.2646 10+103 +0.2484 11+103

4 ν
−
10 921.4 729.3 303.8 +0.8160 10−101 −0.3097 10−100 +0.2483 11−102 +0.2304 10−102

5 2ν
+
10 1071.7 879.6 +0.6981 10+101 +0.2623 11+100 +0.2360 10+104 +0.2355 11+104 +0.2337 11+103

6 2ν
−
10 1422.1 1230.0 350.4 +0.7171 10−102 −0.3868 10−101 −0.2863 11−103 −0.2343 10−104 +0.2316 11−101 −0.2269 10−103

7 3ν
+
10 1552.3 1360.2 +0.6237 10+102 +0.3430 11+101 −0.2377 11+106 −0.2284 10+101 +0.2263 11+105

9 3ν
−
10 1946.9 1754.8 394.6 +0.6327 10−103 +0.4334 10−102 +0.3061 11−104 +0.2545 10−105 −0.2338 11−102

10 4ν
+
10 2039.9 1847.8 +0.5587 10+103 −0.3674 11+102 +0.2999 10+102 +0.2375 11+107

11 4ν
−
10 2473.1 2281.0 433.2 +0.5647 10−104 −0.4446 10−103 +0.3179 11−105 −0.2680 10−106

8 ν
+
1 1818.4 1626.3 +0.7782 11+100 −0.3092 10+102 −0.3086 10+101 +0.2844 11+101

14 ν
−
1 2790.3 2598.2 971.9 +0.9358 11−100 −0.2637 10−101

TABLE S3. Convergence of Q1-Q10 states. The energy eigen-
values EM , where M is a serial index, are given with respect to
the TS energy as the reference zero of energy. The state labels
follow the corresponding eigenstate table in the manuscript.
The tunneling splittings between identified state pairs (ar-
ranged successively in the table) is ∆. All energies and tun-
neling splittings are in cm−1. In parenthesis in table header is
number of PODVR basis functions, NPO

α , for each coordinate,
α. (See also Table 5 of the manuscript.) The final column in-
dicates the fractional percentage change in tunneling splitting
between the highest and penultimate basis used. For all con-
vergence checks, the NPO

1 = 18 was held fixed as its highest 1D
eigenvalues surpassed 50000 cm−1 for that size.

M Label EM ∆ |%∆err|
(18, 17) (18, 15) (18, 17) (18, 15)

1 ν+
gs 192.12 192.21

2 ν−gs 433.95 433.95 241.83 241.74 0.04
3 ν

+
10 617.57 617.86

4 ν
−
10 921.42 921.48 303.85 303.62 0.08

5 2ν
+
10 1071.66 1069.95

6 2ν
−
10 1422.12 1422.22 350.46 352.27 0.52

7 3ν
+
10 1552.30 1547.28

9 3ν
−
10 1946.87 1945.86 394.57 398.58 1.02

10 4ν
+
10 2039.91 2038.13

11 4ν
−
10 2473.05 2468.88 433.14 430.75 0.55

8 ν
+
1 1818.41 1818.28

14 ν
−
1 2790.30 2790.28 971.89 972.0 0.01

TABLE S4. Two-dimensional eigenstates in Q1-Q29 subspace. The columns follow the description given in Table S2.

M Label EM Eex
M ∆ Description

1 ν+
gs 953.5 0.0 +0.8146 10+290 +0.5548 11+290

2 ν−gs 1392.9 439.4 439.4 +0.9193 10−290 +0.3664 11−290
3 ν

+
1 2307.7 1354.2 +0.6589 11+290 −0.5082 10+290 +0.4421 10+291 +0.2523 12+290

4 ν
−
1 3015.4 2061.9 707.7 +0.7328 10−291 +0.5892 11−290

5 ν
+
29 3174.4 2220.9 +0.6471 10+291 +0.5354 11+291 −0.3943 11+290 −0.2282 12+290

7 ν
−
29 4050.3 3096.8 875.9 +0.6132 11−290 −0.5139 11−291 −0.5039 10−291 −0.2240 10−290

6 2ν
+
1 3904.1 2950.6 +0.5735 11+291 +0.5035 12+290 −0.4432 10+291 +0.3470 10+292

8 2ν
−
1 4667.3 3713.8 763.2 +0.6012 10−292 +0.5332 11−291 −0.4035 12−290 −0.2566 10−291
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(b) M=2, ν−gs
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(c) M=3, ν+10
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(d) M=4, ν−10
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(e) M=5, 2ν+10
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(f) M=6, 2ν−10
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(g) M=7, 3ν+10
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(h) M=9, 3ν−10
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(i) M=10, 4ν+10
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(k) M=8, ν+1

2.5 0.0 2.5
Q1

4

2

0

2

4

6

8

Q 1
0

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(l) M=14, ν−1

FIG. S2. Plots of Q1-Q10 eigenstates. The descriptions of these states are given in Table S2. The labelling is consistent with the
nodal pattern in each plot.

TABLE S5. Convergence of Q1-Q29 states. The
states listed match those given in the corre-
sponding table of the manuscript. See the cap-
tion of Table S3 for notational details.

M Label EM ∆ |%∆err|
(18, 7) (18, 6) (18, 7) (18, 6)

1 ν+
gs 953.46 949.30

2 ν−gs 1392.90 1392.14 439.44 442.84 0.77
3 ν

+
1 2307.68 2293.10

4 ν
−
1 3015.43 2996.49 707.75 703.39 0.62

5 ν
+
29 3174.37 3169.29

7 ν
−
29 4050.30 4045.74 875.93 876.45 0.06

6 2ν
+
1 3904.14 3899.12

8 2ν
−
1 4667.30 4654.82 763.16 755.70 0.98

2. Q1-Q29 Eigenstates

Q29 is the second most important mode after Q10. This also is symmetrically coupled to Q1, although less coupled
compared to Q10. The effective barrier height in the Q1-Q29 space is about 642 cm−1. The first eight states are listed
in Table S4, the last of which which surpasses ∼5000 cm−1 from the 2D minimum. The convergence of the states
is given in Table S5. Along Q29, we have investigated states up to one quanta of excitation as it has a high local
frequency. Contour plots of the eigenstates are given in Fig. S3. Assignment of states and labeling notation has been
done in the same fashion as for the Q1-Q10 case.

It is evident from Table S4 that eigenstate assignment in the Q1-Q29 space is more complex than that for Q1-Q10
due to smaller differences in leading coefficients. Here, too, most states are difficult to be assigned to a single direct
product state. The figures of the eigenstates also show different nodal patterns than those for Q1-Q10 eigenstates; we
remark that the nodes themselves are locally perpendicular to very curved wavefunctions.

The lowest two states are ν±gs. The states M = 3 and 4, labelled as ν
±
1 , have one quantum of excitation in Q1 with

even and odd parity, respectively. This assignment is done mainly based on nodal structure. Similarly, states M = 6
and 8 are assigned as 2ν

±
1 , while M = 5 and 7 are assigned as ν

±
29. From Table S4, it is evident that these pairs
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2.5 0.0 2.5
Q1

4

2

0

2

4

6

Q 2
9

0.06

0.04

0.02

0.00

0.02

0.04

0.06

(c) M=3, ν+1
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FIG. S3. Plots of Q1-Q29 eigenstates. The descriptions of these states are given in Table S4. The labelling is consistent with the
nodal pattern in each plot.

TABLE S6. Two-dimensional eigenstates in Q1-Q5 subspace. The columns follow the description given in Table S2. The n◦ν±1,5
label only indicates the nth state of a given parity, and is not to be confused with the standard nν

±
1 notation.

M Label EM Eex
M ∆ Description

1 ν+
gs 241.8 0.0 +0.7566 10+50 +0.6107 11+50

2 ν−gs 654.8 413.0 413.0 +0.5937 10+51 +0.5722 10−50 +0.3756 11+51 +0.2935 11−50
3 1◦ν−1,5 882.8 641.0 +0.6282 10−50 −0.4508 10+51 −0.4088 11+51 +0.3761 11−50

4 1◦ν+
1,5 1047.5 805.7 +0.5747 10+52 −0.5652 10−51 +0.3243 11+52 −0.2600 11−51

5 2◦ν+
1,5 1394.4 1152.6 +0.5774 10−51 +0.4393 10+52 +0.4131 11+52 +0.3344 11−51

6 2◦ν−1,5 1472.0 1230.2 424.5a +0.5573 10+53 +0.5548 10−52 +0.2820 11+53 +0.2368 11−52

7 3◦ν−1,5 1872.3 1630.5 +0.5280 10−52 −0.4356 10+53 −0.4237 11+53 +0.2966 11−52
−0.2367 10−53

8 3◦ν+
1,5 1912.2 1670.4 +0.5443 10−53 +0.5393 10+54 +0.2450 11+54

10 4◦ν+
1,5 2348.6 2106.8 +0.4787 10−53 −0.4505 10+54 −0.4443 11+54 +0.2591 11−53

−0.2529 11+52 −0.2526 10−54
11 4◦ν−1,5 2375.4 2133.6 463.2b +0.5480 10−54 −0.5383 10+55 −0.2561 11+53

13 5◦ν−1,5 2827.7 2585.9 +0.4585 10+55 +0.4577 10+54 +0.4531 11+55 −0.2758 11+53
+0.2390 11+54

9 ν
+
1 2064.4 1822.6 +0.6168 11+50 −0.5308 10+50 +0.4744 12+50

19 ν
−
1 3482.7 3240.9 1418.3 +0.6797 11−50 −0.4808 12−50 −0.4336 10−50

12 (ν1 +ν5)
+ 2545.2 2303.4 +0.5924 11+51 −0.4793 10+51 +0.4014 12+51 −0.2465 11−52

+0.2237 11−50
15 (ν1 +2ν5)

+ 2974.4 2732.6 +0.5449 11+52 −0.4471 10+52 +0.3387 12+52 −0.3012 11−51
+0.2994 11−53

18 (ν1 +3ν5)
+ 3412.1 3170.3 +0.5044 11+53 −0.4209 10+53 +0.3387 11−54 +0.3346 11−52

+0.2886 12+53
a,b Possible tunneling pair with M=4 and M=8, respectively.

states are difficult to be attributed purely Q1 or Q29 excitations, respectively. One possible reason could be the similar
frequencies of Q1 and Q29 ( 2759.5 cm−1, 2270.7 cm−1) at the local minimum of Q1-Q29 2D potential. The tunneling
splitting pattern reveals an enhancement in tunneling due to Q29 excitation as well but this is difficult to attribute
solely to Q29 as most states have some Q1 contribution as well.
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TABLE S7. Convergence of Q1-Q5 states. The states listed match those given in the corresponding table of the manuscript. See
the caption of Table S3 for notational details.

M Label EM ∆ |%∆err|
(18, 12) (18, 10) (18, 12) (18, 10)

1 ν+
gs 241.83 241.26

2 ν−gs 654.79 654.99 412.96 413.73 0.19
3 1◦ν−1,5 882.77 882.97
4 1◦ν+

1,5 1047.49 1047.25
5 2◦ν+

1,5 1394.35 1394.26
6 2◦ν−1,5 1471.96 1471.46 424.47a 424.21a 0.06
7 3◦ν−1,5 1872.33 1871.33
8 3◦ν+

1,5 1912.16 1913.20
10 4◦ν+

1,5 2348.57 2348.34
11 4◦ν−1,5 2375.39 2371.82 463.23b 458.62b 1.00
13 5◦ν−1,5 2827.69 2825.13
9 ν

+
1 2064.37 2064.04

19 ν
−
1 3482.71 3482.57 1418.34 1418.53 0.01

12 (ν1 +ν5)
+ 2545.18 2545.87

15 (ν1 +2ν5)
+ 2974.40 2974.07

18 (ν1 +3ν5)
+ 3412.11 3406.83

a,b Possible tunneling pair with M=4 and M=8, respectively.

3. Q1-Q5 Eigenstates

Q5 is the only other B2 mode apart from Q1 in the seven mode subspace, and hence the Q1-Q5 potential is of the
asymmetrically coupled type. The effective barrier height in the Q1-Q5 2D potential is about 565 cm−1. The computed
eigenstates are given in Table S6 and their plots are in Figure S4. Owing to asymmetry and weak coupling, which is
evident from the small shift of the two minima in the Q5 direction in Fig. 5a, nodal lines are along the diagonal and
antidiagonal. For some higher energy states, though, nodal lines become almost parallel to Q1 axis, as predicted in
the model calculation by Takada and Nakamura8 and making them easier to assign than other states. In all cases, the
parity assignment arises from the presence/absence of sign change to the (Q1, Q5)→ (−Q1,−Q5) transformation.

The lowest two states are ν±gs. State M = 9 and 19 have one quantum of excitation in Q1, which is evident from
nodal structure. These are assigned ν

+
1 and ν

−
1 . Other clearly identifiable states are M = 12, 15, and 18, which are

of overall positive parity and readily assigned to (ν1 + nν5)
+, n = 1− 3. Based on the size of the ν

±
1 splitting, their

tunneling pair states are expected to be in the 4000-5000 cm−1 range.

Other listed states are not easily attributed to excitation in a particular mode. Only their parity is clear. Hence
the states are labelled as n◦ν±1,5, where n is just a serial index for a state of that parity. It must be emphasized that
this n does not refer to the number of quanta. As shown in Fig. S4, the nodal lines are either along the diagonal or
antidiagonal. Consider first the set of states M = 4, 6, 8, and 11, whose nodes are along the diagonal. It is tempting to
assign the M pairs (4, 6) and (8, 11) as tunneling doublets. The wavefunctions are evidently spread along the IRC path
in this 2D space. Simple ± linear combinations within each pair are found to be localized in one well or the other, and
a wavepacket propagation initiated with these localized packets (implemented through the split operator method)
shows that the evolving packet proceeds through the diagonal. With support from these observations, splittings for
these pairs are given in Table S6. Compared to that for the ν±gs pair, these pairs show increasing splitting. However,
the increase is modest compared to that seen for increasing Q10 excitation in Table S2.

The other set is made of M = 3, 5, 7, 10, and 13. These states have increasing number of antidiagonal nodes. It is
unclear that these can be organized as tunneling pairs. For example, wavepacket dynamics initiated with the ± linear
combination of M = 3 and 5 evolved from a localized on the bottom left region to the top right region while always
having a node along the antidiagonal. The significance of such observations in the context of tunneling dynamics is
not immediately apparent.

It is instructive to contrast the present results with the ASMC model of Takada and Nakamura.7,8 Correcting for
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FIG. S4. Plots of Q1-Q5 eigenstates. The descriptions of these states are given in Table S6. The labelling is consistent with the
nodal pattern in each plot.

mode signs between their model and ours, the antidiagonal regions (second and fourth quadrants, hence between
the wells) and the diagonal regions (first and third quadrants) belong to the regions of complex (C) and imaginary
(I) actions, respectively. The small shift of minimum and low frequency of Q5 indicate the weak coupling regime,
which corresponds to the ASMC case with overlapping C regions associated with the two wells. Prior calculations7,8

used localized wavefunctions with quanta of excitation directly along the low frequency mode, and mixed tunneling
was predicted to take place through the C regions. Their numerical results showed an oscillating pattern of tunneling
splittings. In the present instance, an approximate comparison may be made with the linear combinations of pairs (4,
6) and (8, 11), where the wavepacket dynamics does show tunneling though the C region. If indeed these pairs are
tunneling doublets, we see simple enhancement of tunneling. In contrast, the states M = 3, 5, 7, 10, and 13 do not
appear to have a direct counterpart with the Takada-Nakamura work. In a limiting perspective, this set of states may
be considered as ones with increasing quanta perpendicular to the tunneling direction. Also, as mentioned just above,
dynamics from linear combinations of these states, such as M = 3 and 5, are not so revealing.

4. Q1-Qx Eigenstates, x = 7, 13, 27

The trio of A1 modes Q7, Q13, and Q27 form the next rung of modes relevant to the H-transfer (after Q1, Q5, Q10
and Q29.) Their displacement from TS to EQM contributes about 150 cm−1 towards reaching the actual minimum
(see Section 2.1 of the manuscript) indicating their minor energetic relevance compared to the four key modes. The
minimal nature of their coupling to the transfer mode is evident from their 2D potentials with Q1 in Fig. 5 of the
manuscript. This is not suprising given that the motions (see Fig. 2 of manuscript) involve the ring structural changes
that accompany the H atom transfer. The barrier heights in the Q1-Qx spaces are about (x = 7) 542 cm−1, (x = 13) 542
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2.5 0.0 2.5
Q1

4

2

0

2

4

6

Q 7

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(f) M=6, 2ν−7

2.5 0.0 2.5
Q1

4

2

0

2

4

6

Q 7

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(g) M=7, 3ν+7

2.5 0.0 2.5
Q1

4

2

0

2

4

6

Q 7

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(h) M=9, 3ν−7

2.5 0.0 2.5
Q1

4

2

0

2

4

6

Q 7

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(i) M=10, 4ν+7

2.5 0.0 2.5
Q1

4

2

0

2

4

6

Q 7

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(j) M=12, 4ν−7

2.5 0.0 2.5
Q1

4

2

0

2

4

6

Q 7
0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(k) M=8, ν+1

2.5 0.0 2.5
Q1

4

2

0

2

4

6

Q 7

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(l) M=16, ν−1

FIG. S5. Plots of Q1-Q7 eigenstates. The descriptions of these states are given in Table S8. The labelling is consistent with the
nodal pattern in each plot.
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FIG. S6. Plots of Q1-Q13 eigenstates. The descriptions of these states are given in Table S10. The labelling is consistent with the
nodal pattern in each plot.
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TABLE S8. Two-dimensional eigenstates in Q1-Q7 subspace, their description, assign-
ment, and tunneling splittings. The columns follow those of Table IV for Q1-Q10 states in
the manuscript.

M Label EM Eex
M ∆ Description

1 ν+
gs 302.0 0.0 +0.7693 10+70 +0.6331 11+70

2 ν−gs 841.0 539.0 539.0 +0.8679 10−70 +0.4927 11−70
3 ν

+
7 925.7 623.7 +0.7846 10+71 +0.6079 11+71

4 ν
−
7 1412.2 1110.2 486.5 +0.8716 10−71 +0.4859 11−71

5 2ν
+
7 1486.0 1184.0 +0.7811 10+72 +0.6003 11+72

6 2ν
−
7 1968.1 1666.1 482.1 +0.8719 10−72 +0.4844 11−72

7 3ν
+
7 2035.5 1733.5 +0.7791 10+73 +0.5995 11+73

9 3ν
−
7 2521.0 2219.0 485.5 +0.8717 10−73 +0.4836 11−73

10 4ν
+
7 2613.2 2311.2 +0.7812 10+74 +0.5895 11+74

12 4ν
−
7 3083.5 2781.5 470.3 +0.8729 10−74 +0.4806 11−74

8 ν
+
1 2105.1 1803.1 +0.6534 11+70 −0.5495 10+70 +0.5049 12+70

16 ν
−
1 3506.6 3204.6 1401.5 +0.7259 11−70 −0.5146 12−70 −0.4460 10−70

TABLE S9. Convergence of Q1-Q7
states. The states listed match those
given in Table S8 just above. See the
caption of Table S3 for notational de-
tails. For some states, the index of the
correct state in the lower basis (iden-
tified visually from eigenstate plots) is
different from that in the higher basis.
For such cases, a second M value from
the lower basis calculation is given in
parentheses.

M Label EM ∆ |%∆err|
(18, 8) (18, 6) (18, 8) (18, 6)

1 ν+
gs 301.95 301.63

2 ν−gs 840.99 841.35 539.04 539.72 0.13
3 ν

+
7 925.67 921.06

4 ν
−
7 1412.18 1410.75 486.51 489.69 0.65

5 2ν
+
7 1485.99 1492.35

6 2ν
−
7 1968.09 1970.05 482.10 477.70 0.91

7 3ν
+
7 2035.48 2024.96

9 (10) 3ν
−
7 2521.04 2518.82 485.56 493.86 1.71

10 (11) 4ν
+
7 2613.23 2646.08

12 (14) 4ν
−
7 3083.45 3082.48 470.22 436.40 7.19

8 ν
+
1 2105.12 2104.12

16 ν
−
1 3506.56 3507.02 1401.44 1402.9 0.10

TABLE S10. Two-dimensional eigenstates in the Q1-Q13 subspace, their description, assignment, and
tunneling splittings. The columns follow those of Table IV for Q1-Q10 states in the manuscript.

M Label EM Eex
M ∆ Description

1 ν+
gs 421.2 0.0 +0.7702 10+130 +0.6320 11+130

2 ν−gs 958.1 536.9 536.9 +0.8687 10−130 +0.4913 11−130
3 ν

+
13 1282.1 860.9 +0.7854 10+131 +0.6016 11+131

4 ν
−
13 1764.0 1342.8 481.9 +0.8732 10−131 +0.4821 11−131

5 2ν
+
13 2061.1 1639.9 +0.7491 10+132 +0.5731 11+132

7 2ν
−
13 2550.0 2128.8 488.9 +0.8737 10−132 +0.4787 11−132

8 3ν
+
13 2866.2 2445.0 +0.7732 10+133 +0.5798 11+133

10 3ν
−
13 3342.0 2920.8 475.8 +0.8753 10−133 +0.4741 11−133

12 4ν
+
13 3646.9 3225.7 +0.7689 10+134 +0.5709 11+134

15 4ν
−
13 4123.6 3702.4 476.7 +0.8747 10−134 +0.4708 11−134

6 ν
+
1 2238.9 1817.7 +0.6316 11+130 −0.5194 10+130 +0.4815 12+130 −0.2412 10+132

11 ν
−
1 3622.8 3201.6 1383.9 +0.7275 11−130 −0.5131 12−130 −0.4447 10−130

cm−1, and (x = 27) 546 cm−1. Tables S8, S10 and S12 below list the eigenvalues, descriptions and tunneling splittings
in these 2D spaces, while the corresponding eigenstate plots are in Figs. S5, S6, and S7. Convergence data are given
in Tables S9, S11 and S13.

As these tables and plots show, the assignments of eigenstates in term of excitations in Q7, Q13 and Q27 is straight-
forward. The tunneling doublets for all three Q1-Qx spaces all exhibit a similar pattern of mode-specific excitation.
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TABLE S11. Convergence of Q1-Q13
states. The states listed match those
given in Table S10 just above. See the
caption of Table S3 for notational de-
tails. For some states, the index of the
correct state in the lower basis (iden-
tified visually from eigenstate plots) is
different from that in the higher basis.
For such cases, a second M value from
the lower basis calculation is given in
parentheses.

M Label EM ∆ |%∆err|
(18, 7) (18, 6) (18, 7) (18, 6)

1 ν+
gs 421.22 424.63

2 ν−gs 958.11 958.64 536.89 534.01 0.54
3 ν

+
13 1282.13 1281.27

4 ν
−
13 1763.99 1763.04 481.86 481.77 0.02

5 2ν
+
13 2061.09 2068.36

7 2ν
−
13 2549.99 2553.34 488.90 484.98 0.80

8 3ν
+
13 2866.21 2852.12

10 (11) 3ν
−
13 3342.02 3335.75 475.81 483.63 1.64

12 (14) 4ν
+
13 3646.87 3745.44

15 (16) 4ν
−
13 4123.60 4134.31 476.73 388.87 18.43

6 ν
+
1 2238.90 2239.60

11 (12) ν
−
1 3622.79 3623.89 1383.89 1384.29 0.03

TABLE S12. Two-dimensional eigenstates in the Q1-Q27 subspace, their description, assignment, and tunneling splittings. The
columns follow those of Table IV for Q1-Q10 states in the manuscript.

M Label EM Eex
M ∆ Description

1 ν+
gs 806.6 0.0 +0.7736 10+270 +0.6320 11+270

2 ν−gs 1341.0 534.4 534.4 +0.8704 10−270 +0.4868 11−270
3 ν

+
27 2410.4 1603.8 +0.7341 10+271 +0.5326 11+271 −0.2795 11+270 +0.2411 10+270

5 ν
−
27 2921.6 2115.0 511.2 +0.8715 10−271 +0.4686 11−271

7 2ν
+
27 4004.5 3197.9 +0.7464 10+272 +0.5135 11+272 −0.2977 11+271 +0.2253 10+271

9 2ν
−
27 4500.5 3693.9 496.0 +0.8706 10−272 +0.4564 11−272

4 ν
+
1 2621.9 1815.3 +0.5970 11+270 −0.4991 10+270 +0.4585 12+270 +0.3050 11+271 +0.2941 10+271

6 ν
−
1 3987.6 3181.0 1365.7 +0.7253 11−270 −0.4980 12−270 −0.4390 10−270

TABLE S13. Convergence of Q1-Q27
states. The states listed match those
given in Table S12 just above. See the
caption of Table S3 for notational de-
tails. For some states, the index of the
correct state in the lower basis (iden-
tified visually from eigenstate plots) is
different from that in the higher basis.
For such cases, a second M value from
the lower basis calculation is given in
parentheses.

M Label EM ∆ |%∆err|
(18, 6) (18, 5) (18, 6) (18, 5)

1 ν+
gs 806.61 811.21

2 ν−gs 1341.01 1339.97 534.40 528.76 1.06
3 ν

+
27 2410.37 2424.47

5 ν
−
27 2921.63 2927.22 511.26 502.75 1.66

7 (6) 2ν
+
27 4004.51 3980.64

9 2ν
−
27 4500.54 4493.08 496.03 512.44 3.31

4 ν
+
1 2621.91 2629.72

6 (7) ν
−
1 3987.60 3986.45 1365.69 1356.73 0.66

Excitation in Q1 increases the tunneling splitting as expected, while there is a decrease in splitting of about 30-60 cm−1

upon excitation in Qx where x = 7,13,27. This can be attributed to minimal coupling of these modes to Q1, whereby
excitation in Qx leads to increase in amplitude in a direction almost orthogonal to Q1, where the barriers are higher
and less conducive to tunneling. For a better understanding, we revisit these potentials in Sec. III A 5 below with a
sudden approximation calculation.

5. Sudden approximation analysis in 2D subspaces

Having computed variational eigenstates in various 2D subspaces, we analyse whether tunneling splittings from an
approximate method also shows similar trends. In particular, we use the sudden approximation, which provides in-
sights into the role of coupling strength and local frequency in tunneling. As used in the literature, this approximation
considers the reaction coordinate (here Q1) as the fast (high frequency) variable, so the other slow (low frequency)
coordinates can be held fixed or controlled. The essence of this approach stems from this separation of frequencies.
In the present context, an estimate of tunneling splittings can be obtained within this framework.

We limit our analysis to 2D Q1-Qy subspaces, where y = 7, 10, 13, and 27. Within the treatment of 2D Hamiltonians
for tunneling, the frequency of the coupling coordinate is a parameter8,11,12 but is typically so chosen that it is suffi-
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FIG. S7. Plots of Q1-Q27 eigenstates. The descriptions of these states are given in Table S12. The labelling is consistent with the
nodal pattern in each plot.

TABLE S14. Local minima and frequencies in 2D Q1-Qy subspaces. Minimum positions and energies in selected subspaces, and
the frequencies of both modes at these minima are listed. The frequencies are obtained by 9-point numerical differentiation.

Q1-Qy Qmin
1 Qmin

y Emin ν1 νy
(cm−1) (cm−1) (cm−1)

Q1-Q7 −1.32 0.10 −541.6 2694.6 578.7
Q1-Q10 −1.88 1.56 −960.1 4602.8 814.0
Q1-Q13 −1.32 −0.09 −542.2 2711.7 812.4
Q1-Q27 −1.33 0.09 −545.7 2671.3 1608.4
Q1-Q29 −1.48 0.35 −641.8 2759.6 2270.7

TABLE S15. Tunneling splittings in the sudden approximation. Ground and vibrationally excited state tunneling splittings ∆n1,ny

in the Q1-Qy spaces (y = 7, 10, 13, 27) with this approximation are compared with the results from variational 2D QM calculations
(given in parentheses and taken from earlier tables in this ESI).

∆n1,ny Q1-Q7 Q1-Q10 Q1-Q13 Q1-Q27
∆0,0 534.5 (539.0) 158.7 (241.8) 529.4 (536.9) 532.1 (534.4)
∆0,1 484.7 (486.5) 206.8 (303.9) 477.6 (481.9) 484.5 (511.3)
∆0,2 480.3 (482.1) 263.9 (350.5) 470.4 (488.9) 479.9 (496.0)
∆0,3 478.0 (485.6) 302.5 (394.6) 464.1 (475.8) 478.3 –

ciently smaller than that of the reaction coordinate. In order to check the applicability of the sudden approximation
in 2D spaces for catecholate monoanion, we compute the frequencies of Q1 and Qy at the local minima in the 2D
subspaces. These are given in Table S14. The frequency disparity between them is reasonably applicable in all cases,
albeit less so for Q1-Q27 where the frequency ratio is slightly smaller than 0.5. The table additionally lists Q1-Q29.
Given the high frequency ratio and knowing that they are strongly coupled, we do not apply the present analysis
to this pair. We also note that satisfactory comparisons for the Q1-Q10 space is not expected as this pair is the most
strongly coupled in catecholate monoanion.

The calculation of tunneling splitting in 2D under the sudden approximation has been done by numerical integration
of the following formula:11

∆n1,ny =
∫

dQy

[
φny(Qy|Qmin

1 )
]2

∆
1D
n1
(Qy). (1)

∆1D
n1
(Qy) is the tunneling splitting along Q1 at a fixed value of Qy, while φny(Qy|Qmin

1 ) is the 1D eigenfunction along Qy
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TABLE S16. Three-dimensional eigenstates in Q1-Q10-Q29 subspace, their description, assignment, and tunneling splittings.
The columns follow those of Table S2.

M Label EM Eex
M ∆ Description

1 ν+
gs 1057.1 0.0 +0.8545 10+100290 +0.2653 10+101290

2 ν−gs 1139.9 82.8 82.8 +0.9106 10−100290
3 ν

+
10 1374.8 317.7 +0.6057 10+101290 +0.3198 11+100290 −0.2849 10+100290

+0.2666 11+102290 −0.2506 10+103290 +0.2414 10+102290
4 ν

−
10 1552.4 495.3 177.6 +0.8019 10−101290 +0.2466 11−100290 +0.2256 11−102290

5 2ν
+
10 1754.6 697.5 +0.4231 10+102290 −0.4029 10+101290 +0.2850 11+101290

−0.2824 11+103290 −0.2475 10+104290 −0.2328 10+100290
6 2ν

−
10 1993.7 936.6 239.1 +0.7042 10−102290 −0.2688 11−103290 +0.2572 11−101290

7 3ν
+
10 2169.0 1111.9 +0.3671 10+102290 +0.3312 10+103290 +0.2808 11+100290

+0.2754 11+104290 +0.2409 10+105290
9 3ν

−
10 2446.8 1389.7 277.8 +0.6185 10−103290 +0.2939 11−104290 +0.2547 10−101290

+0.2399 10−105290 −0.2385 11−102290
10 4ν

+
10 2613.7 1556.6 +0.3464 10+103290 −0.2664 11+105290 −0.2583 10+104290

+0.2348 10+106290 −0.2316 11+101290
13 4ν

−
10 2917.4 1860.3 303.7 +0.5465 10−104290 +0.3074 11−105290 +0.2689 10−102290

−0.2521 10−106290
8 ν

+
1 2384.3 1327.2 +0.5620 11+100290 −0.3789 10+101290 +0.3634 10+100291

+0.3365 11+101290 −0.2628 10+102290
11 ν

−
1 2655.0 1597.9 270.7 +0.5274 10−100291 +0.5120 11−100290 −0.3370 10−101290

+0.2719 10−100290

at fixed Q1 = Qmin
1 of the 2D space. This approach was used previously for tropolone.8,11 As the purpose here is to

only check the approximation, we focus of the ground tunneling splitting along Q1.

Some technical details are in order. The 1D eigenfunctions φny(Qy|Qmin
1 ) are computed with a HO-DVR basis. For

the numerical integration in Eq. (1), a grid of 101 points in Qy was chosen. These span the range [−4, 4] for Q7,
Q13 and Q27, while a wider [−4, 6] range was used for Q10. These ranges were chosen using the corresponding states
from the 2D variational calculations. At each value of Qy, we first do a 1D sinc-DVR calculation along Q1 in the
range [−4.8, 4.8] to get its ground state tunneling splitting ∆1D

0 (Qy). The final integral was calculated with Simpson’s
1/3rd and trapezoidal methods using Numpy’s numerical integration routine.13 The resulting estimates of tunneling
splittings for ny = 0-3 are listed in Table S15.

The sudden approximation expectedly obtains the correct pattern and reasonably close tunneling splitting values
with respect to exact results for minimally coupled potentials involving Q7, Q13 and Q27. While the pattern of in-
creasing splitting for Q10 excitation is still captured by the approximation, it strongly underestimates the splitting
magnitudes; this may be attributed to the method not accounting for the significant wavefunction amplitude in the
curved region with increasing Q10 excitation. The importance of curvature in tunneling has been well-discussed in the
literature.9,12 For minimally coupled cases the curvature is small, and the tunneling and IRC paths almost coincide.
But for large curvature IRC paths, ignoring the curvature leads to erroneous results.

B. 3D Q1−Q10−Q29 Eigenstates

The modes Q1, Q10, and Q29 make up a significant reduced dimensional subspace owing to their energetic contribu-
tion as a trio (about 3/4th of the full barrier) and displacement magnitudes shown in Table 1. We present eigenstates
in this 3D subspace below. The barrier height in 3D is about 1296 cm−1. The computed eigenstates, their descriptions,
and tunneling splittings for different mode specific excitations are listed in Table S16. The convergence behaviour is
given in Table S17. The corresponding eigenstate contour plots are provided in Fig. S8. The 3D eigenstates have a
more mixed character compared to 2D ones. This indicates strong intermode coupling among Q1, Q10, and Q29. The
structures of the eigenstates show that they are not a mere extension of the respective 2D states discussed further
above, although some comparisons may be drawn.

The first two states are of course the ground state pair with a tunneling splitting of 82.8 cm−1. This is considerably
smaller than that in the 2D calculations, which may be attributed in part to the to higher barrier in 3D. The states
M = 8 and M = 11 are labelled as the tunneling split pair having one quantum of excitation of Q1. The splitting of this

13



TABLE S17. Convergence of Q1-Q10-
Q29 states. See the caption of Table S3
for notational details.

M Label EM ∆ |%∆err|
(18, 17, 7) (18, 15, 6) (18, 17, 7) (18, 15, 6)

1 ν+
gs 1057.05 1056.67

2 ν−gs 1139.89 1139.34 82.84 82.67 0.21
3 ν

+
10 1374.84 1373.84

4 ν
−
10 1552.38 1552.46 177.54 178.62 0.61

5 2ν
+
10 1754.55 1753.89

6 2ν
−
10 1993.69 1994.31 239.14 240.42 0.54

7 3ν
+
10 2168.96 2168.32

9 3ν
−
10 2446.78 2447.58 277.82 279.26 0.52

10 4ν
+
10 2613.69 2613.39

13 4ν
−
10 2917.43 2917.73 303.74 304.34 0.20

8 ν
+
1 2384.26 2383.29

11 ν
−
1 2655.02 2655.62 270.76 272.33 0.58

4 2 0 2 4
Q1

4

2

0

2

4

6

8

Q 2
9

0.04

0.02

0.00

0.02

0.04

(a) M=1, ν+gs

4 2 0 2 4
Q1

4

2

0

2

4

6

8

Q 2
9

0.04

0.02

0.00

0.02

0.04

(b) M=2, ν−gs

4 2 0 2 4
Q1

4

2

0

2

4

6

8

Q 2
9

0.04

0.02

0.00

0.02

0.04

(c) M=8, ν+1

4 2 0 2 4
Q1

4

2

0

2

4

6

8

Q 2
9

0.04

0.02

0.00

0.02

0.04

(d) M=11, ν−1

4 2 0 2 4
Q1

4

2

0

2

4

6

8

Q 1
0

0.04

0.02

0.00

0.02

0.04

(e) M=3, ν+10

4 2 0 2 4
Q1

4

2

0

2

4

6

8

Q 1
0

0.04

0.02

0.00

0.02

0.04

(f) M=4, ν−10

4 2 0 2 4
Q1

4

2

0

2

4

6

8

Q 1
0

0.04

0.02

0.00

0.02

0.04

(g) M=5, 2ν+10

4 2 0 2 4
Q1

4

2

0

2

4

6

8

Q 1
0

0.04

0.02

0.00

0.02

0.04

(h) M=6, 2ν−10

4 2 0 2 4
Q1

4

2

0

2

4

6

8

Q 1
0

0.04

0.02

0.00

0.02

0.04

(i) M=7, 3ν+10

4 2 0 2 4
Q1

4

2

0

2

4

6

8

Q 1
0

0.04

0.02

0.00

0.02

0.04

(j) M=9, 3ν−10

4 2 0 2 4
Q1

4

2

0

2

4

6

8

Q 1
0

0.04

0.02

0.00

0.02

0.04

(k) M=10, 4ν+10

4 2 0 2 4
Q1

4

2

0

2

4

6

8
Q 1

0

0.04

0.02

0.00

0.02

0.04

(l) M=13, 4ν−10

FIG. S8. Plots of Q1-Q10-Q29 3D eigenstates. The descriptions of these states are given in Table VII of the manuscript. The
labelling is consistent with the nodal pattern in each plot. In keeping with the text in Section III C of the manuscript, the y-axis in
plots (a)-(d) is Q29, while it is Q10 in the rest.

excited pair is also much more modest than corresponding values from 2D calculations, again due to the change of
barrier height. Yet, the nodal patterns for these two states [Fig. S8(c) and (d)] are very similar to M = 3 and M = 4
states, respectively, in two dimensional Q1-Q29 calculation. The even parity state ν

+
1 (M = 8) has sizeable contribution

from direct product states with a total of one quantum in each mode, viz. 11+100290, 10+101290, 10+100291. The odd
parity state ν

−
1 (M = 11) has almost equal contributions from 11−100290 and 10−100291. In the Q1-Q29 2D results,

similar mixed excitation character in Q1 and Q29 was found.

States pairs (3, 4), (5, 6), (7, 9) and (10, 13) are tunneling doublets due to one, two, three and four quanta of
excitation in Q10. These assignments have been done mainly based on nodal patterns. Note also that mode spe-
cific excitation in Q10 enhances the tunneling splitting, maintaining the trend from Q1-Q10 2D calculations but with
magnitudes lowered due to a higher effective barrier in the present 3D space.
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TABLE S18. Four dimensional eigenstates in Q1-Q5-Q10-Q29 subspace, their description,assignment, and tunneling split-
tings. The columns follow those of Table S2. Some eigenstates are labelled as a/b indicating that both a and b contribute to the
description. For certain states involving Q5, we have expanded the description in terms of the 2D Q1-Q5 eigenstates. For these, the
subscript of (1,5) refers to the eigenstate serial index from Table S6.

M Label EM Eex
M ∆ Description

1 ν+
gs 1286.8 0.0 +0.8256 10+50100290 +0.2509 10+50101290

2 ν−gs 1351.1 64.3 64.3 +0.8576 10−50100290
3 ν

+
10 1612.1 325.3 +0.5890 10+50101290 +0.3097 11+50100290 +0.2607 10+50102290

+0.2493 11+50102290 −0.2442 10+50103290
4 ν

−
10 1758.3 471.5 146.2 +0.5756 10−50101290 +0.4490 10+51100290 +0.2869 10+51101290

5 ν
−
10/1◦ν−1,5 1804.3 517.5 +0.4859 (1,5)3100290 +0.4429 (1,5)3101290 −0.3518 (1,5)12100290

7 2ν
+
10 2001.6 714.8 +0.3898 10+50102290 −0.3759 10+50101290 +0.2771 11+50101290

−0.2636 11+50103290 −0.2403 10+50104290 −0.2375 10+50100290
10 2ν

−
10/1◦ν−1,5 2252.4 965.6 250.8 +0.4693 (1,5)3102290 +0.3238 (1,5)2102290 +0.2774 (1,5)3101290

+0.2458 (1,5)19102290
13 3ν

+
10 2430.5 1143.7 +0.3722 10+50102290 +0.2833 10+50103290 +0.2532 11+50100290

+0.2507 11+50104290 +0.2307 10+50105290
18 3ν

−
10 2722.0 1435.2 291.5 +0.5092 10−50103290 +0.2298 11−50104290

6 1◦ν+
1,5 1834.0 547.2 +0.5823 (1,5)4100290 −0.3684 (1,5)5100290 +0.2264 (1,5)4101290

8 ν
−
5 2109.3 822.5 +0.3919 (1,5)2102290 −0.3504 (1,5)3101290 +0.2760 (1,5)2101290

−0.2652 (1,5)2103290 −0.2354 (1,5)12100290
9 1◦ν+

1,5 +ν
+
10 2233.6 946.8 +0.5215 (1,5)4101290 +0.3214 (1,5)5100290 +0.3005 (1,5)4102290

+0.2251 (1,5)4100290
11 2◦ν+

1,5 2321.1 1034.3 +0.4652 (1,5)5100290 +0.4482 (1,5)5101290 −0.3410 (1,5)15100290
+0.2347 (1,5)5102290

12 2◦ν−1,5 2326.9 1040.1 +0.5816 (1,5)6100290 +0.3371 (1,5)7100290 +0.2821 (1,5)6101290

16 ν
+
1 2657.1 1370.3 +0.5078 11+50100290 +0.3688 10+50100291 −0.3390 10+50101290

+0.3291 11+50101290 −0.2449 10+50102290
22 ν

−
1 2868.7 1581.9 211.6 +0.4592 10−50100291 +0.4384 11−50100290 −0.2933 10−50101290

+0.2532 10−50100290

It can be seen in the next sections that this 3D space sets the template for the analysis of 4D eigenstates in the
Q1-Q10-Q29-Qx unrelaxed mode spaces, where x = 5, 7, 13, and 27.

C. 4D eigenstates

1. Q1-Q5-Q10-Q29 eigenstates

The barrier height in this important 4D subspace is about 1353 cm−1. Table S18 shows some of the computed states,
while the companion Table S19 gives some convergence data. As in lower dimensional subspaces, the state characters
are mixed, and we are again aided by nodal patterns shown in Figs. S9 to assign states. Nonetheless, parallels in the
eigenstate expansion coefficients are visible, as discussed below.

The first two states are of course the ground state pair ν±gs with a tunneling splitting of 64.3 cm−1, which is a notch
lower than the 3D ground state tunneling splitting. Note also that the major expansion coefficients are rather close
to those of the ground 3D state pair, except for the presence in 4D of 50 in each basis function (compare ν±gs of Table
S16). This suggests a minor influence of Q5 for these states. The plots of both states are shown in the Q1-Q29 space
in parts (a) and (b) of Fig. S9. Parts (c) and (d) of the figure show the other easily assigned states, viz. ν

+
1 (M = 16)

and ν
−
1 (M = 22). Once again these can be closely matched in plot shape and expansion coefficients with their 3D

counterparts. That the major terms do not have any contributions from excited basis function in Q5 is striking. Some
other states also show a similar trend and will be mentioned below. The ν

±
1 tunneling splitting is about 212 cm−1,

which about 20% lower than the 3D value. Before moving to the next set of states, we note that plots for four states
just discussed can be compared very well to the 3D eigenstate plots in Figs. S8(a-d), and that replotting them in the
Q1-Q5 and Q1-Q10 spaces does not reveal any new information.

States M = 3, 7 and 13 are readily assigned to ν
+
10, 2ν

+
10 and 3ν

+
10. These are done on two grounds. First, we
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FIG. S9. Plots of Q1-Q5-Q10-Q29 eigenstates. Their descriptions are given in Table S18. Each contour plot is generated from the
slice of the wavefunction in the two plotted coordinates at zero values of the other two coordinates.
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TABLE S19. Convergence of Q1-Q5-Q10-Q29 states. See the caption of Table S3 for notational details.

M Label EM ∆ |%∆err|
(18, 12, 17, 7) (18, 10, 15, 6) (18, 12, 17, 7) (18, 10, 15, 6)

1 ν+
gs 1286.75 1286.61

2 ν−gs 1351.12 1350.71 64.37 64.10 0.42
3 ν

+
10 1612.06 1611.68

4 ν
−
10 1758.34 1758.39 146.28 146.71 0.29

5 ν
−
10/1◦ν−1,5 1804.25 1804.32

7 2ν
+
10 2001.59 2001.15

10 2ν
−
10/1◦ν−1,5 2252.37 2253.02 250.78 251.87 0.43

13 3ν
+
10 2430.50 2429.74

18 3ν
−
10 2722.02 2722.55

6 1◦ν+
1,5 1834.04 1833.83

8 ν
−
5 2109.32 2109.09

9 1◦ν+
1,5 +ν

+
10 2233.61 2233.68

11 2◦ν+
1,5 2321.11 2321.26

12 2◦ν−1,5 2326.93 2326.96
16 ν

+
1 2657.07 2656.50

22 ν
−
1 2868.74 2869.20 211.67 212.70 0.49

find a term-by-term close match with the major expansion coefficients of corresponding 3D states; compare the
corresponding expansions in Table S16. Second is the structure of the wavefunction plots in Figures S9(e, e′), (i, i′)
and (o, o′). Note that the unprimed plots are wavefunction slices in Q1-Q5 space with Q10 = Q29 = 0, while the primed
plots are in Q1-Q10 space with Q5 = Q29 = 0. The unprimed slices reveal just the ground state in Q1-Q5 space (for ν

+
10

and 2ν
+
10) or a very small contribution of an even parity function (for 3ν

+
10).

The odd parity counterparts of the above three states are more nuanced. For instance, consider M = 4 and 5, which
are under 50 cm−1 apart. The former has a clear node in Q10 and has the same shape as M = 4 of the 2D Q1-Q10
space [compare Figs. S9(f′) and S2(d)], while its Q1-Q5 slice is much like the 2D ν−gs [see Figs. S9(f) and S4(b)].
This prompts the assigment of ν

−
10 to this 4D state. Note, however, that its expansion coefficients have some similar

terms as its 3D counterpart but with quite different coefficients. The 4D M = 5 state also has a similar projection in
Q1-Q10 space, and also has a important component of 1◦ν−1,5 [compare M = 3 in Figure S4(c)]. The admixture in M = 5
suggests an assignment of ν

−
10/1◦ν−1,5, where we use the ‘a/b’ shorthand to indicate the presence of both contributions

in the eigenstates. Therefore, while we assign M = 3 and M = 4 as tunneling pairs ν
±
10, it must be recognized that is

not clean pair assignment owing to the nature of M = 5. In a similar manner, the states M = 7 and 10 can be assigned
as the 2ν

±
10 tunneling pairs, but the latter again has 1◦ν−1,5 mixed in. Likewise, M = 13 and M = 18 may be assigned

as 3ν
±
10 tunneling pairs, while noting that the latter has a new odd parity projection in Q1-Q5. Notwithstanding the

subtleties in state assignments arising from the mode mixings in 4D, we see a steady increase of tunneling splitting in
nν
−
10, from about (n = 1) 146 cm−1 to (n = 2) 251 cm−1 and finally (n = 3) 287 cm−1. This continues the trend seen in

our 2D and 3D results that the CO scissor motion Q10 enhances tunneling.

We note that tunneling doublets due to excitation solely in Q29 were not found up to 5000 cm−1, likely due its high
frequency as well as inter-mode coupling. It remains to discuss states with dominant excitation in the Q1-Q5 subspace.
Their assignment is done mainly from nodal patterns. From the 4D contour plots, we directly see that M = 6, 11, and
12 have 2D M = 4, 5, and 6 in Q1-Q5 space as counterparts; see parts (d)-(f) of Fig. S4. The 4D labels are directly
derived from the 2D ones. State M = 9 appears to be a combination state involving one quantum in Q10. State M = 8
has no counterpart in 2D, and appears to be a mainly Q5 excitation with a small admixture of 2ν

−
10.

2. Q1−Q10−Q29−Qx eigenstates with x=7, 13, 27

For the 4D Q1-Q10-Q29-Qx subspace, the minimal nature of the coupling with Qx, x = 7, 13, and 27, is suggested
by the respective effective barrier heights of about 1319 cm−1, 1330 cm−1, and 1343 cm−1 compared to the 3D
value (Q1-Q10-Q29) of 1296 cm−1. Tables S20 (S21), S22 (S23), and S22 (S23) list the 4D eigenstates (and their
convergence), while the corresponding plots are in Figs. S10, S12, and S12.
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TABLE S20. Four-dimensional eigenstates in Q1-Q7-Q10-Q29 subspace, their description,assignment, and tunneling splittings.
The columns follow those of Table IV for Q1-Q10 states in the manuscript. Contour plots for selected states are shown in Fig. S10
below.

M Label EM Eex
M ∆ Description

1 ν+
gs 1344.7 0.0 +0.8612 10+70100290 +0.2387 10+70101290

2 ν−gs 1410.4 65.7 65.7 +0.8995 10−70100290
3 ν

+
10 1654.5 309.8 +0.6237 10+70101290 +0.3118 11+70100290 +0.2617 11+70102290

−0.2492 10+70103290 +0.2370 10+70102290
4 ν

−
10 1813.0 468.3 158.5 +0.7752 10−70101290 +0.2327 11−70100290

5 ν
+
7 1923.2 578.5 +0.8442 10+71100290 +0.2393 10+71101290

6 ν
−
7 1980.2 635.5 57.0 +0.8737 10−71100290

7 2ν
+
10 2021.6 676.9 +0.4272 10+70102290 −0.3404 10+70101290 +0.2845 11+70101290

−0.2755 11+70103290 −0.2525 10+70100290 −0.2428 10+70104290
9 2ν

−
10 2243.0 898.3 221.4 +0.6581 10−70102290 −0.2549 11−70103290 +0.2313 11−70101290

8 (ν7 +ν10)
+ 2236.0 891.3 +0.5957 10+71101290 +0.2934 11+71100290 +0.2484 10+71102290

+0.2408 11+71102290 −0.2397 10+71103290
10 (ν7 +ν10)

− 2384.0 1039.3 148.0 +0.7189 10−71101290
12 2ν

+
7 2487.7 1143.0 +0.8178 10+72100290 +0.2496 10+72101290

13 2ν
−
7 2545.7 1201.0 58.0 +0.8495 10−72100290

11 3ν
+
10 2425.7 1081.0 +0.3203 10+70102290 +0.3179 10+70103290 +0.2652 11+70104290

+0.2554 10+70101290 +0.2325 11+70100290 +0.2306 10+70105290
15 3ν

−
10 2684.6 1339.9 258.9 +0.5523 10−70103290 +0.2665 11−70104290 +0.2417 10−71102290

+0.2330 10−70101290
16 ν

+
1 2704.7 1360.0 +0.5363 11+70100290 +0.3761 11+70101290 +0.3723 10+70100291

−0.3406 10+70101290
20 ν

−
1 2940.0 1595.3 235.3 +0.5229 10−70100291 +0.4905 11−70100290 −0.3219 10−70101290

+0.2782 10−70100290
17 (2ν7 +ν10)

+ 2801.9 1457.2 +0.5467 10+72101290 +0.2731 11+72100290 +0.2606 10+72102290
+0.2304 10+73100290 −0.2287 10+72103290

21 (2ν7 +ν10)
− 2950.9 1606.2 149.0 +0.6619 10−72101290 −0.2834 10−71102290 +0.2444 10−73100290

We compare the present 4D eigenstate descriptions to the 3D Q1-Q10-Q29 states (Table S16). It is readily seen that
the five state pairs, ν±gs, ν

±
1 , as well as nν

±
10, n = 1− 3, are essentially the same as those from the 3D. The dominant

direct product eigenstates and their coefficient magnitudes are very similar for these states; of course, each direct
product has an additional ground eigenstate along Qx (i.e. x0) in them. Excited states of Qx are not completely
absent; for instance, in the Q7 case, the 3ν

−
10 state has a small (but larger than 5%) contribution from a direct product

that has a 71 in it. The roles of Qx in the above listed states appear overall minor. Corroborating this is the observation
that the eigenstate contour plots for the states are like those in 3D. Turning to the tunneling splitting for all five state
pairs, we find that while they preserve the patterns found in 3D, their magnitudes are lower than the corresponding
3D values.

In the tables, nν±x , n = 1,2, states are also given. The descriptions of these states indicates a small coupling to Q10
(for Q7 and Q13) and Q29 (for Q27). The plots for these states projected onto the Q1-Qx space in Figs. S10, S12, and S12
show nodal lines that are essentially parallel to the axes. The tunneling splittings for these states preserve the patterns
seen in the 2D Q1-Qx calculations, namely a reduction of the tunneling splitting with increase in number of quanta
along Qx. The tables also show the combination states (nν7 +ν10)

±, n = 1 and 2, and (ν10 +ν13)
±. Interestingly, the

1+1 combinations largely mirror the structure of ν
±
10, with each listed basis function now containing x1 additionally.

For the (2ν7+ν10)
±, we note some minor contributions which point to the presence of anharmonic couplings between

Q7 and Q10. The tunneling splittings for these combination states are lower than that for ν
±
10. This is consistent with

the pattern seen for the nν±x states compared to ν±gs.

Overall, the 4D eigenstates involving Q7, Q13, and Q27 are much easier to identify and assign via nodal patterns as
well as comparisons to 3D results than those involving Q5. Consequently, the tunneling splitting patterns for increasing
excitations along these three modes as well as Q10 are very clearly seen.
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TABLE S21. Convergence of Q1-Q7-Q10-Q29 states. See the caption of Table S3 for notational details.
The calculation with lower basis size was only done by changing the basis size for Q7, as the convergence
check for other coordinates were done with lower dimensional calculations.

M Label EM ∆ |%∆err|
(18, 8, 17, 7) (18, 6, 17, 7) (18, 8, 17, 7) (18, 6, 17, 7)

1 ν+
gs 1344.70 1344.82

2 ν−gs 1410.39 1410.44 65.69 65.62 0.11
3 ν

+
10 1654.45 1654.48

4 ν
−
10 1812.96 1813.00 158.51 158.52 0.006

5 ν
+
7 1923.18 1922.45

6 ν
−
7 1980.21 1979.93 57.03 57.48 0.79

7 2ν
+
10 2021.61 2021.50

9 2ν
−
10 2243.00 2243.01 221.39 221.51 0.05

8 (ν7 +ν10)
+ 2235.97 2235.25

10 (ν7 +ν10)
− 2384.00 2383.83 148.03 148.58 0.37

12 2ν
+
7 2487.69 2489.15

13 2ν
−
7 2545.71 2546.36 58.02 57.21 1.40

11 3ν
+
10 2425.69 2425.64

15 3ν
−
10 2684.58 2684.55 258.89 258.91 0.008

16 ν
+
1 2704.74 2705.02

20 ν
−
1 2940.03 2940.17 235.29 235.15 0.06

17 (ν10 +2ν7)
+ 2801.92 2802.61

21 (ν10 +2ν7)
− 2950.89 2950.99 148.97 148.38 0.40

TABLE S22. Four-dimensional eigenstates in Q1-Q10-Q13-Q29 subspace, their description,assignment, and tunneling splittings.
The columns follow those of Table IV for Q1-Q10 states in the manuscript. Contour plots for selected states are given in Fig. S11
below.

M Label EM Eex
M ∆ Description

1 ν+
gs 1449.0 0.0 +0.8626 10+100130290

2 ν−gs 1508.7 59.7 59.7 +0.8919 10−100130290
3 ν

+
10 1754.6 305.6 +0.6383 10+101130290 +0.3079 11+100130290 +0.2628 11+102130290

−0.2503 10+103130290 +0.2320 10+102130290
4 ν

−
10 1906.8 457.8 152.2 +0.7729 10−101130290 +0.2250 11−100130290 +0.2245 11−102130290

5 2ν
+
10 2116.4 667.4 +0.4434 10+102130290 −0.3147 10+101130290 +0.2864 11+101130290

−0.2797 11+103130290 −0.2644 10+100130290 −0.2473 10+104130290
8 2ν

−
10 2332.5 883.5 216.1 +0.6648 10−102130290 −0.2604 11−103130290 +0.2272 11−101130290

6 ν
+
13 2247.6 798.6 +0.8408 10+100131290

7 ν
−
13 2297.6 848.6 50.0 +0.8604 10−100131290

9 3ν
+
10 2517.1 1068.1 +0.3322 10+103130290 +0.3179 10+102130290 +0.2771 10+101130290

+0.2722 11+104130290 +0.2375 10+105130290 +0.2250 11+100130290
12 3ν

−
10 2768.2 1319.2 251.1 +0.5702 10−103130290 +0.2782 11−104130290 +0.2387 10−101130290

+0.2330 10−105130290
10 (ν10 +ν13)

+ 2557.7 1108.7 +0.6168 10+101131290 +0.2865 11+100131290 +0.2444 10+102131290
−0.2430 10+103131290 +0.2396 11+102131290

11 (ν10 +ν13)
− 2696.1 1247.1 138.4 +0.7316 10−101131290

13 ν
+
1 2806.5 1357.5 +0.5287 11+100130290 +0.3812 11+101130290 +0.3721 10+100130291

−0.3290 10+101130290
16 ν

−
1 3035.4 1586.4 228.9 +0.5192 10−100130291 +0.4788 11−100130290 −0.3110 10−101130290

+0.2745 10−100130290
17 2ν

+
13 3038.1 1589.1 +0.8103 10+100132290 +0.2357 10+101132290

18 2ν
−
13 3086.5 1637.5 48.4 +0.8171 10−100132290
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FIG. S10. Plots of Q1-Q7-Q10-Q29 4D eigenstates. The descriptions of these states are given in S20 above. The labelling is
consistent with the nodal pattern in each plot.

TABLE S23. Convergence of Q1-Q10-
Q13-Q29 states. See the caption of Ta-
ble S3 for notational details. The cal-
culation with lower basis size was only
done by changing the basis size for Q13,
as the convergence check for other co-
ordinates were done with lower dimen-
sional calculations.

M Label EM ∆ |%∆err|
(18, 17, 7, 7) (18, 17, 6, 7) (18, 17, 7, 7) (18, 17, 6, 7)

1 ν+
gs 1448.97 1449.15

2 ν−gs 1508.71 1508.79 59.74 59.64 0.17
3 ν

+
10 1754.60 1754.84

4 ν
−
10 1906.82 1906.94 152.22 152.10 0.08

5 2ν
+
10 2116.39 2116.47

8 2ν
−
10 2332.52 2332.48 216.13 216.01 0.06

6 ν
+
13 2247.60 2247.29

7 ν
−
13 2297.60 2297.40 50.0 50.11 0.22

9 3ν
+
10 2517.08 2517.04

12 3ν
−
10 2768.24 2767.90 251.16 250.86 0.12

10 (ν10 +ν13)
+ 2557.65 2557.91

11 (ν10 +ν13)
− 2696.11 2696.34 138.46 138.43 0.02

13 ν
+
1 2806.54 2807.03

16 ν
−
1 3035.42 3035.79 228.88 228.76 0.05

17 2ν
+
13 3038.10 3039.54

18 2ν
−
13 3086.47 3087.38 48.37 47.84 1.10
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(j) M=7, ν−13
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FIG. S11. Plots of Q1-Q10-Q13-Q29 4D eigenstates. The descriptions of these states are given in S22 above. The labelling is
consistent with the nodal pattern in each plot.

TABLE S24. Four dimensional eigenstates in Q1-Q10-Q27-Q29 subspace,their description, assignment, and tunneling split-
tings. The columns follow those of Table IV for Q1-Q10 states in the manuscript. Contour plots for selected states are given in
Fig. S12 below.

M Label EM Eex
M ∆ Description

1 ν+
gs 1839.7 0.0 +0.8600 10+100270290 +0.2318 10+101270290

2 ν−gs 1902.0 62.3 62.3 +0.8948 10−100270290
3 ν

+
10 2150.1 310.3 +0.6330 10+101270290 +0.3123 11+100270290 +0.2618 11+102270290

−0.2539 10+103270290 +0.2413 10+102270290
4 ν

−
10 2306.3 466.6 156.3 +0.7852 10−101270290 +0.2333 11−100270290

5 2ν
+
10 2520.8 681.1 +0.4396 10+102270290 −0.3498 10+101270290 +0.2922 11+101270290

−0.2802 11+103270290 −0.2531 10+100270290 −0.2521 10+104270290
6 2ν

−
10 2740.9 901.2 220.1 +0.6894 10−102270290 −0.2634 11−103270290 +0.2420 11−101270290

7 3ν
+
10 2931.1 1091.4 +0.3490 10+102270290 +0.3357 10+103270290 +0.2754 11+104270290

+0.2475 11+100270290 +0.2465 10+105270290 +0.2448 10+101270290
9 3ν

−
10 3187.4 1347.7 256.3 +0.6037 10−103270290 +0.2854 11−104270290 +0.2442 10−105270290

+0.2391 10−101270290
8 ν

+
1 3157.6 1317.9 +0.4965 11+100270290 +0.3515 11+101270290 −0.3380 10+101270290

+0.3364 10+100270291 −0.2421 10+100271290
10 ν

−
1 3355.7 1516.0 198.1 +0.4691 10−100271290 −0.3981 11−100270290 −0.3785 10−100270291

+0.3071 10−101270290 −0.2823 10−100270290
12 ν

+
27 3471.0 1631.3 +0.7952 10+100271290

13 ν
−
27 3559.0 1719.3 88.0 +0.7447 10−100271290 +0.3590 10−100270291 +0.2634 11−100270290
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TABLE S25. Convergence of Q1-Q10-Q27-Q29 states. See the caption of Table S3 for nota-
tional details. The calculation with lower basis size was only done by changing the basis size
for Q27, as the convergence check for other coordinates were done with lower dimensional
calculations.

M Label EM ∆ |%∆err|
(18, 17, 6, 7) (18, 17, 5, 7) (18, 17, 6, 7) (18, 17, 5, 7)

1 ν+
gs 1839.67 1839.31

2 ν−gs 1901.95 1901.73 62.28 62.42 0.22
3 ν

+
10 2150.11 2150.06

4 ν
−
10 2306.33 2306.02 156.22 155.96 0.17

5 2ν
+
10 2520.81 2520.96

6 2ν
−
10 2740.91 2740.65 220.10 219.69 0.19

7 3ν
+
10 2931.10 2930.81

9 3ν
−
10 3187.38 3187.29 256.28 256.48 0.08

8 ν
+
1 3157.64 3156.67

10 ν
−
1 3355.72 3355.61 198.08 198.94 0.43

12 ν
+
27 3471.00 3472.74

13 ν
−
27 3558.96 3559.54 87.96 86.80 1.32
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FIG. S12. Plots of Q1-Q10-Q27-Q29 4D eigenstates. The descriptions of these states are given in S24 above. The labelling is
consistent with the nodal pattern in each plot.
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IV. Eigenstates partially relaxed potentials

The introductory text in Sec. 3 of the manuscript as well as Sec. 3.3 describe how partially relaxed potentials are
obtained for n-mode spaces, denoted Snr. We note that additional potential corrections as decribed in Appendix B
of the manuscript are used here. These are subsequently used to obtain nD eigenstates for these spaces. Those for
S3r = (Q1,Q10,Q29) are described in the manuscript in Sec. 3.3. Presently, we describe the results for S1r = (Q1) and
S2r = (Q1,Q10).

A. Q1 eigenstates

Fig. S13 shows the relaxed potential along Q1, where all other coordinates are relaxed. Note that this includes
the potential corrections described in Appendix B, especially correction 2 there. Absent this, for region |Q1| ≈ 6, the
DGEVB potential shows an unphysical maximum. The correction adds a repulsive function that is mainly effective for
|Q1|>∼ 5 and begins with a soft increase followed by rapid increase.
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1 )

FIG. S13. Plot of the relaxed potential as a function of Q1. All other normal modes are relaxed. See Appendix B of the manuscript
regarding the additional diabatic corrections used towards the relaxed potentials.

The calculated 1D eigenstates are given in Table S26. These are obtained directly in a sinc-DVR basis of size 71.
The ground state splitting is found to be 11.1 cm−1. With increasing excitation in Q1, the tunneling splitting expectly
increases strongly.

TABLE S26. Eigenstates for S1r = (Q1) with a relaxed potential. A sinc-DVR basis of size 71 was used in the range [-7.0, 7.0] to
obtain the eigenstates.

M Label EM Eex
M ∆

1 ν+
gs −1132.1 0.0

2 ν−gs −1121.0 11.1 11.1
3 ν

+
1 −359.6 772.5

4 ν
−
1 −239.6 892.5 120.0

5 2ν
+
1 292.5 1424.6

6 2ν
−
1 641.2 1773.3 348.7

B. Q1-Q10 2D eigenstates

With the corrected potential (Appendix B of the manuscript), Fig. S14 shows the 2D relaxed potential in (Q1,Q10)
space. The potential is qualitatively similar to the unrelaxed one, albeit with the full barrier height recovered and
spanning a larger coordinate range.

Selected eigenstates computed with a (50, 50) PODVR basis with this potential are enumerated in Table S27 and
plotted in Fig. S15. The tunneling splitting of the ground state pair (ν±gs) is interestingly lowered to 7.8 cm−1 from 11.1
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FIG. S14. Plot of the partial relaxed potential in the S2r = (Q1,Q10) mode space. Contours have a 500 cm−1 spacing

cm−1 in the ground state. The next pair several pairs of excited states are identified as nν
±
10. For the two excitations,

the dominant expansion coefficients also support the assignment. For higher excitations, the coefficients are more
mixed but the wavefunction plots clearly indicate the assignment. The tunneling splittings expectedly increase with
excitation. The state pair 12 and 14 are assigned to ν

±
1 . The latter is clearly so from both the dominant expansion

coefficient as well as the wavefunction plot. However, state 12 is a mixture of a Q10 excitation (likely with 5 quanta)
and a Q1 excitation as seen from the wavefunction pattern. State 11 (not shown) appears to be the counterpart of this
admixture; a comparison of the nodal patterns of states 11 and 12 suggest that the latter has a dominant Q1 excitation
contribution.

TABLE S27. 2D eigenstates in the (Q1, Q10) space with a partially relaxed potential.

M Label EM Eex
M ∆ Description

1 ν+
gs −471.8 0.0 +0.9324 10+100 −0.2687 11+101

2 ν−gs −463.9 7.8 7.8 +0.9427 10−100 −0.2565 11−101
3 ν

+
10 −166.8 304.9 +0.7457 10+101 −0.3734 11+102 −0.3177 11+100

−0.2247 10+103
4 ν

−
10 −130.0 341.8 36.9 +0.7935 10−101 −0.3548 11−102 −0.3216 11−100

5 2ν
+
10 124.5 596.3 +0.5272 10+102 +0.3870 11+103 −0.2839 10+100

−0.2797 11+101 +0.2579 12+102 −0.2304 12+104
−0.2272 10+104

6 2ν
−
10 212.8 684.6 88.3 +0.6289 10−102 +0.3928 11−103 −0.3127 11−101

−0.2704 10−100 −0.2420 10−104 +0.2271 12−102
7 3ν

+
10 427.2 898.9 +0.4061 10+101 −0.3394 11+104 +0.3342 10+103

+0.2730 12+103 +0.2623 12+105 −0.2444 10+102
8 3ν

−
10 569.2 1041.0 142.3 +0.4674 10−103 −0.3902 11−104 +0.3742 10−101

+0.2460 12−103 +0.2429 10−105 +0.2298 11−102
+0.2242 12−105

9 4ν
+
10 755.0 1226.8 +0.4433 10+102 −0.2791 11+105 −0.2645 12+106

−0.2482 11+101 +0.2403 12+104
10 4ν

−
10 932.6 1404.4 177.6 +0.3996 10−102 −0.3586 11−105 +0.3242 10−104

−0.2405 12−106 +0.2290 12−104 −0.2262 10−106
12 ν

+
1 1134.6 1606.4 +0.4990 11+100 −0.4604 10+103 −0.2410 12+101

14 ν
−
1 1344.5 1816.2 209.8 +0.8463 11−100 +0.3712 10−101 −0.2889 12−101
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FIG. S15. Plots of selected S2r = (Q1,Q10) eigenstates. Their assignments and descriptions are given in Table S27.

C. Q1-Q10-Q29 3D eigenstates - convergence

Section 3.3 of the manuscript describes the 3D Q1-Q10-Q29 eigenstates with a partially relaxed PES. The calculations
were carried out there with a (54, 32, 18) PODVR basis in the three modes. Here, we provide convegence plots.
Fig. S16(a) shows the convergence as a function of number of PODVR functions in Q1; a substantial number of
functions was required before they sufficiently spanned the coordinate space. Fig. S16(b) shows the convergence
with respect to the Q10 and Q29, which is very good with fewer points that for Q1.

(a) Q1 convergence (b) Q10 and Q29 convergence
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FIG. S16. Convergence of S3r = (Q1,Q10,Q29) eigenstates. Plotted are the differences in the eigenstates computed with various
PODVR bases as a function of the state excitation energy. Both axes are in cm−1 units.
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