Electronic Supporting Information

Unprecedented Observation and Characterization of Sulfur-Centred Bifurcated Hydrogen Bonds

Xiantao Ma^{a,*}, Yingying Zhu^a, Jing Yu^a, Geng Zhao^a, Jiaxin Duanmu^a, Yiyun Yuan^a, Xue-Ping Chang ^{a,*}, Dongli Xu^a and Qiuju Zhou^{a,*}

^[a] College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China;

E-mail: xiantaoma@126.com; xuepingchang@xynu.edu.cn; zhouqiuju@iccas.ac.cn

Table of contents

Experimental	S2
1. Variable-temperature NMR experiments	S3
2. Determination of stoichiometry between phenol (Host) and Ph ₂ S (Guest) studied b	y Job's plot
experiments	S4
3. Determination of stoichiometry between Phenol (Host) and Ph ₂ S (Guest) studied 1	oy ¹ H NMR
titration experiments	S6
4. DOSY NMR experiments	
5. FT-IR experiments	S10
6. DFT calculation	S12

Experimental

General. Unless otherwise noted, all chemicals were purchased and used without further purification, and all NMR experiments were measured on a JNM-ECZ600R/S3 (Jeol, Japan) (600 MHz) using CD₃CN as the solvent. Chemical shifts for ¹H NMR were referred to internal Me₄Si (0 ppm) as the standard. The Fourier-transform infrared (FT-IR) transmission spectra were measured by liquid-film method on a spectrometer (Thermofisher, IS50, USA) in the range of 4000-400 cm⁻¹. It has a resolution of 4 cm⁻¹, and each spectrum was an average of 64 scans. Geometry optimizations and single-point energies calculations in the ground state were using the DFT method with the B3LYP exchange-correlation functional in combination with the allelectron 6-311++G** basis set. The nature of all stationary points was confirmed by harmonic vibrational frequency analysis. Gibbs free energies of all optimized structures were calculated at 298.15 K and 1 atm. All DFT calculations were carried out using the GAUSSIAN09 package.

1. Variable-temperature NMR experiments (Figure 2 in the text).

Detailed procedure: A mixture of phenol (**1a**) (0.057 mmol, 5.3 mg, 5 μ L) and CD₃CN (500 μ L) was prepared as the test sample. Then the sample was measured on a JNM-ECZ600R/S3 (Jeol, Japan) (600 MHz) at 25 °C. Diphenyl sulfide **2a** (0.057 mmol, 10.6 mg) was added to the abovementioned mixtrue, and then variable-temperature NMR experiments (25, 35, 45, 55, 65 and 75 °C) were conducted.

Results:

Figure S1 Variable-temperature NMR experiments

Conclusion: According to the figure S1, the O-H \cdots S H-bond was possibly formed between phenol (1a) and diphenyl sulfide (2a)

2. Determination of stoichiometry between phenol (Host) and Ph₂S (Guest) studied by Job's plot experiments (Figure 3 in the text)

Detailed procedure: A stock solvent of phenol **1a** (1.75 mmol, 165.0 mg, 154 μ L) in 3346 μ L CD₃CN was prepared and the concentration of phenol **1a** is 0.50 mmol/mL. A stock solvent of diphenyl sulfide **2a** (1.75 mmol, 326.0 mg, 293 μ L) in 3207 μ L CD₃CN was prepared and the concentration of diphenyl sulfide **2a** is 0.50 mmol/mL. The solutions of the phenol **1a** (Host) and diphenyl sulfide **2a** (Guest) were mixed to NMR tubes according to certain proportions (Table S1). The chemical shift of OH in free phenol host is 6.981. Then the host-guest binding interactions was studied by the Job's plot method at 293 K.

Result:

 δ (-OH of Guest Host Mole fraction $\Delta \delta$ Entry $X_{1a}^*\Delta\delta$ Host) (µL) Host (X_{1a}) (ppm) (μL) (ppm) 1 0 1 500 0 6.981 0 2 50 450 0.9 6.979 0.002 0.0031 3 100 400 0.8 6.975 0.006 0.0062 4 0.7 0.0069 150 350 6.973 0.008 5 6.969 0.012 0.008 200 300 0.6 6 225 275 0.55 6.966 0.015 0.0081 7 250 250 0.5 6.964 0.017 0.0085 8 275 225 0.45 6.963 0.018 0.00825 9 300 0.4 200 6.961 0.02 0.007210 350 150 0.3 6.958 0.023 0.0056 11 400 100 0.2 6.95 0.0048 0.031 12 450 50 0.1 6.95 0.031 0.0018

Table S1. Experimental results of Job's Plot method (Host: phenol; Guest: Ph₂S).

Figure S2. Job's plot

Conclusion: The maximum on the Job plot for Phenol (1a) is at $X_{1a} = 0.55$ (Figure S6), suggesting that both 1:1 and 2:1 binding complexes were possibly formed from phenol (1a) and diphenyl sulfide (2a)

3. Determination of stoichiometry between Phenol (Host) and Ph₂S (Guest) studied by ¹H NMR titration experiments (Figure 4 in the text)

Detailed procedure: phenol **1a** (0.114 mmol, 10.7 mg, 10 μ L) was dissolved in 490 μ L CD₃CN and the concentration is 0.228 mmol/mL. Certain amount of diphenyl sulfide (**2a**) was added to the above solution according to table S2.

Result:

Entry	Concentratio n of phenol (mol/L)	Total Vol. (μL)	Concentration of Ph₂S (mol/L)	Equiv. of Ph₂S	δ (-OH phenol) (ppm)	of
1	0.227	502	0.0238	0.105	6.916	
2	0.226	504	0.0474	0.210	6.924	
3	0.225	506	0.0708	0.315	6.93	
4	0.224	508	0.0941	0.420	6.934	
5	0.223	510	0.117	0.525	6.94	
6	0.222	512	0.140	0.630	6.947	
7	0.221	514	0.162	0.735	6.953	
8	0.220	516	0.185	0.840	6.959	
9	0.219	518	0.207	0.945	6.965	
10	0.218	520	0.229	1.05	6.975	
11	0.217	522.5	0.257	1.18	6.979	
12	0.216	525	0.284	1.31	6.985	
13	0.215	527.5	0.311	1.44	6.988	
14	0.214	530	0.338	1.57	6.994	
15	0.213	532.5	0.364	1.70	6.998	
16	0.212	535	0.391	1.83	7.004	
17	0.210	540	0.442	2.10	7.011	
18	0.208	545	0.493	2.36	7.018	
19	0.207	550	0.543	2.62	7.025	
20	0.205	555	0.592	2.88	7.034	
21	0.201	565	0.687	3.41	7.043	
22	0.198	575	0.779	3.93	7.053	
23	0.191	595	0.954	4.98	7.072	

 Table S2. ¹H NMR titration experiments

By using the free online tool, BindFit, which is available at http://supramolecular.org,

our ¹H NMR titration experimental data were fitting with 1:1, 1:2 and 2:1 models and the links and figures are listed as below:

1:1 model

http://app.supramolecular.org/bindfit/view/1055db3a-f95b-4d05-bd5e-1121343e79b1 1:2 model

http://app.supramolecular.org/bindfit/view/f702cb8f-41c0-42ec-9cf9-e851ea600321

2:1 model

http://app.supramolecular.org/bindfit/view/4262ee35-bab1-4d3b-bae9-91e9ea9c38ea

Figure S3 fitting curve of ¹H NMR titration experiments by 1:1 model

Figure S5 fitting curve of ¹H NMR titration experiments by 2:1 model

F24	<i>Ka</i> (M ⁻¹)			
Filter model	K ₁	K_2		
NMR 1:1	$0.98 \pm 3.10\%$			
	1037297739072260.00			
NMR 1:2	$\pm 693160115.5069\%$	1.27±5.2506%		
NMR 2:1	5.09±15.68%	32.07±17.42%		

Table S3 Binding constants obtained by using BindFit.

Conclusion:

As shown in figures S3 and S4, fitting of the titration data with a simple 1:1 or 1:2 model doesn't provide a good match between the calculated and experimental data and the systematic distribution of residuals indicates the incorrectness of this model. When the data were fitted with a 2:1 model, a perfect match was obtained with stochastic residuals of very low values (Figure S5). Besides, the binding constants of 1:2 model have large error while that of 2:1 model is rational and effective. Within the error boundaries, an $\alpha = 4K_2/K_1 = 25.2 \gg 1$ was obtained, indicating the presence of a positive cooperativity in this system and the formation of both 1:1 and 2:1 binding complex.¹ Moreover, the formation of a 2:1 complex is more favourable over the formation of a 1:1 complex

1. P. Thordarson, Chem. Soc. Rev., 2011, 40, 1305

4. DOSY NMR experiments (Figure 6 in the text).

Detailed procedure: Two samples were prepared. **Sample 1**: a mixture of phenol **1a** (0.057 mmol, 5.3 mg, 5 μ L) and CD₃CN (500 μ L); **Sample 2**: a mixture of phenol **1a** (0.057 mmol, 5.3 mg, 5 μ L), diphenyl sulfide **2a** (0.0285 mmol, 5.3 mg) and CD₃CN (500 μ L). Then the DOSY NMR spectra were recorded by using a simple Carr-Purcell spin-echo sequence (diffusion time = 0.10 s, FG pulse width = 0.0011 s, relaxation time = 7 s, points =16, BASE = 2, and scans = 8) at 298K.

Figure S6 The DOSY NMR experiment

Conclusion: The diffusion coefficient of phenol (1a) significantly decreased from $5.22*10^{-9}$ m²/s to $3.45*10^{-9}$ m²/s, when 0.5 equiv. diphenyl sulfide (2a) was added, suggesting that a much bigger binding species might be formed from phenol (1a) and diphenyl sulfide (2a) *via* H-bonding. The mixture of 1.0 equiv. phenol (1a) and 0.5 equiv. diphenyl sulfide (2a) could give a clear and simple DOSY spectrum (Figures S6), suggesting that a single binding specie is formed and the binding stoichiometry between phenol (1a) and diphenyl sulfide (2a) may be 2:1.

5. FT-IR experiments (Figures 7-8 in the text).

Detailed procedure: A mixture of phenol **1a** and diphenyl sulfide (**2a**) or dipropyl sulfide (**2b**) was prepared according to table S4, and then the mixture was directly analyzed on a IR spectrometer (Thermofisher, IS50, USA) in the range of 4000-400 cm⁻¹.

Result:

	Table S4. The preparation of test samples						
	1: 2 (mol)	1a/uL	2a /uL	2b /uL			
1	1:0	100					
2	0:1		100				
3	0:1			100			
4	1:0.25	87.9	41.8				
5	1:0.5	87.9	83.7				
6	1:1	87.9	167.4				
7	1:1.5	87.9	251.0				
8	1:0.25	87.9		35.6			
9	1:0.5	87.9		71.2			
10	1:1	87.9		142.5			
11	1:1.5	87.9		213.7			

Figure S7 The IR experiments of phenol (1a) and diphenyl sulfide (2a)

Figure S8 The IR experiments of phenol (1a) and dipropyl sulfide (2b)

Conclusion: An obvious blue shift was observed when certain amount of diphenyl sulfide (2a) or dipropyl sulfide (2b) was added to the pure phenol (1a), suggesting that the blue shift effect is ascribed to the formation of S···H-O H-bond between phenol (1a) and a thioether. Therefore, the possible π - π stacking interaction between phenol (1a) and diphenyl sulfide (2a) is excluded.

6. DFT calculation (Figure 9 in the text).

E₀: Sum of electronic and zero-point Energies

H₂₉₈: Sum of electronic and thermal Enthalpies

G₂₉₈: Sum of electronic and thermal Free Energies

TCGFE: Thermal correction to Gibbs Free Energy

Standard orientation:						
Center	Atomic	Coordinates		(Angstroms)		
Number	Number	Туре	Х	Y	Ζ	
1	6	0	-1.169707	-1.188851	-0.000001	
2	6	0	0.220923	-1.221513	0.000000	
3	6	0	0.938101	-0.023991	0.000000	
4	6	0	0.262669	1.197721	0.000000	

5	6	0	-1.131319	1.217197	0.000000
6	6	0	-1.855164	0.027125	0.000000
7	1	0	-1.721929	-2.122027	-0.000001
8	1	0	0.764036	-2.158818	-0.000001
9	1	0	0.822822	2.128442	-0.000001
10	1	0	-1.649060	2.169872	0.000001
11	1	0	-2.938347	0.045590	0.000001
12	8	0	2.305329	-0.110342	-0.000002
13	1	0	2.686830	0.773548	0.000012

2a

Standard orientation:					
Center	Atomic	Coordin	ates	(Angstron	ms)
Number	Number	Type	X	Y	Ζ
1	6	0	-2.603095	-1.377891	-0.984245
2	6	0	-1.458383	-0.588437	-0.927459
3	6	0	-1.409318	0.507432	-0.058704
4	6	0	-2.518481	0.811236	0.735996
5	6	0	-3.670069	0.028704	0.656403
6	6	0	-3.714568	-1.070233	-0.198071
7	1	0	-2.631540	-2.229056	-1.655607
8	1	0	-0.605092	-0.821329	-1.552869
9	1	0	-2.475927	1.652901	1.417534
10	1	0	-4.526322	0.273438	1.274984
11	1	0	-4.606513	-1.683735	-0.252197
12	6	0	1.409309	0.507484	0.058705
13	6	0	2.518315	0.811083	-0.736290
14	6	0	1.458549	-0.588148	0.927751
15	6	0	3.669926	0.028580	-0.656704
16	1	0	2.475619	1.652566	-1.418043
17	6	0	2.603276	-1.377578	0.984534
18	1	0	0.605377	-0.820869	1.553386
19	6	0	3.714595	-1.070121	0.198062
20	1	0	4.526062	0.273151	-1.275512
21	1	0	2.631860	-2.228560	1.656124
22	1	0	4.606558	-1.683598	0.252188
23	16	0	-0.000026	1.617652	0.000008

Center	Atomic	Coordinates		(Angstroms)	
Number	Number	Туре	Х	Y	Ζ
1	6	0	-4.031108	2.347852	-0.329791
2	6	0	-3.254379	1.278496	-0.764898
3	6	0	-1.875389	1.280273	-0.530083
4	6	0	-1.276329	2.360032	0.122717
5	6	0	-2.061069	3.436973	0.538153
6	6	0	-3.435919	3.431280	0.318535
7	1	0	-5.100506	2.340928	-0.508505
8	1	0	-3.712870	0.444610	-1.282801
9	1	0	-0.209860	2.358359	0.314084
10	1	0	-1.592798	4.273933	1.043641
11	1	0	-4.043067	4.266469	0.648668
12	6	0	-1.473782	-1.503446	-0.264097
13	6	0	-1.565682	-2.707174	-0.967292
14	6	0	-1.798717	-1.460509	1.094523
15	6	0	-1.975057	-3.866282	-0.309114
16	1	0	-1.326283	-2.734558	-2.024141
17	6	0	-2.225386	-2.618838	1.738336
18	1	0	-1.719942	-0.530143	1.643625
19	6	0	-2.310513	-3.824883	1.042159
20	1	0	-2.042887	-4.797776	-0.859779
21	1	0	-2.481175	-2.579830	2.791295
22	1	0	-2.636989	-4.724751	1.550498
23	16	0	-0.847619	-0.063881	-1.147218
24	6	0	5.505089	0.686147	0.789247
25	6	0	4.183870	0.985859	1.104932
26	6	0	3.149181	0.480013	0.313612
27	6	0	3.446277	-0.324306	-0.790160
28	6	0	4.774405	-0.617332	-1.095840
29	6	0	5.810916	-0.116002	-0.311399
30	1	0	6.302044	1.082680	1.408818
31	1	0	3.935141	1.606338	1.957694

32	1	0	2.642899	-0.716424	-1.405167	
33	1	0	4.995316	-1.242038	-1.954404	
34	1	0	6.841797	-0.346410	-0.552658	
35	8	0	1.870498	0.804777	0.665653	
36	1	0	1.228658	0.393588	0.062155	

4a

Center	Atomic	Coordinates		(Angstroms)	
Number	Number	Туре	Х	Y	Ζ
1	6	0	-1.232803	-2.506567	3.283169
2	6	0	-1.229861	-1.814327	2.073385
3	6	0	-0.013288	-1.453557	1.488549
4	6	0	1.194307	-1.768154	2.116825
5	6	0	1.179897	-2.459636	3.327204
6	6	0	-0.030640	-2.830566	3.909835
7	1	0	-2.176918	-2.786837	3.736340
8	1	0	-2.165200	-1.553363	1.592993
9	1	0	2.135893	-1.473935	1.668914
10	1	0	2.117093	-2.703798	3.814366
11	1	0	-0.037424	-3.366576	4.852160
12	6	0	0.006217	-1.819620	-1.323682
13	6	0	-1.202337	-2.293276	-1.840356
14	6	0	1.222460	-2.312362	-1.803296
15	6	0	-1.189164	-3.275451	-2.829450
16	1	0	-2.143759	-1.897373	-1.478784
17	6	0	1.224144	-3.294653	-2.792199
18	1	0	2.158378	-1.930856	-1.413078
19	6	0	0.021132	-3.777671	-3.304369
20	1	0	-2.127008	-3.643039	-3.230206
21	1	0	2.167901	-3.677247	-3.163981
22	1	0	0.026957	-4.539853	-4.075317
23	16	0	-0.002870	-0.518566	-0.063407
24	6	0	6.034932	2.509599	-0.118943
25	6	0	5.336275	1.306633	-0.105380
26	6	0	3.939991	1.316363	-0.137755

27	6	0	3.251065	2.530947	-0.183779
28	6	0	3.962750	3.729524	-0.196664
29	6	0	5.355545	3.727921	-0.164293
30	1	0	7.118997	2.494296	-0.093891
31	1	0	5.853694	0.355269	-0.070119
32	1	0	2.166067	2.537065	-0.209222
33	1	0	3.420576	4.668003	-0.232448
34	1	0	5.904719	4.661825	-0.174630
35	8	0	3.299588	0.108064	-0.121406
36	1	0	2.335035	0.224476	-0.142715
37	6	0	-6.025412	2.526747	-0.147746
38	6	0	-5.333377	1.319898	-0.155829
39	6	0	-3.936694	1.322535	-0.161467
40	6	0	-3.240782	2.534046	-0.159160
41	6	0	-3.945865	3.736545	-0.150742
42	6	0	-5.339014	3.741977	-0.144872
43	1	0	-7.109823	2.516936	-0.143558
44	1	0	-5.856327	0.370911	-0.158173
45	1	0	-2.155485	2.534689	-0.164051
46	1	0	-3.398256	4.672552	-0.148757
47	1	0	-5.883059	4.678914	-0.138384
48	8	0	-3.302783	0.110776	-0.168611
49	1	0	-2.337440	0.222911	-0.166726