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S.1. Derivation of the equations for the temperature dependence of both the contact and 

pseudocontact shifts within the spin-Hamiltonian approach.

Depending on the represented parameters, the following spin-Hamiltonians were used:

,
�̂� = 𝐷(�̂�2

𝑧 ‒
1
3

�̂�2) + 𝜇𝐵𝐵 ⋅ 𝑔 ⋅ �̂� + 𝐴𝑖𝑠𝑜�̂� ⋅ �̂�

.�̂� = 𝜎𝜆�̂� ∙ �̂� + Δ(3�̂�2
𝑧 ‒ �̂�2) + 𝜇𝐵𝐵( ‒ 𝜎�̂� + 𝑔�̂�) + 𝐴𝑖𝑠𝑜�̂� ⋅ �̂�

(D – zero-field splitting energy;  and  – electronic spin and orbital operators,  and  – their �̂� �̂� �̂�𝑧 �̂�𝑧

projections;  – nuclear spin operator; B – external magnetic field of 14.1 T as observed in an NMR  �̂�

spectrometer with the proton Larmor frequency of 600 MHz;  – Borh magneton; g – electronic 𝜇𝐵

g-tensor;  – isotropic value of hyperfine interaction;  – spin-orbit coupling;  – orbital 𝐴𝑖𝑠𝑜 𝜆 𝜎

reduction factor;  – crystal field parameter).Δ

The contact shift was calculated by the following equation:

,

𝛿𝐶𝑆 =
∑𝜈𝑖 ∙ 𝑒𝑥𝑝( ‒ 𝐸𝑖 𝑘𝑇)

∑𝑒𝑥𝑝( ‒ 𝐸𝑖 𝑘𝑇)
‒ 𝜈0

(  – frequency of i-th Kramers doublet;  – energy of i-th Kramers doublet;  – Larmor 𝜈𝑖 𝐸𝑖  𝜈0

frequency of a nucleus in the external magnetic field without any interactions with electrons (600 

MHz)).

The pseudocontact shift was calculated by the following equation:

𝛿𝑝𝑐 =
1

12𝜋𝑟3
Δ𝜒𝑎𝑥(3𝑐𝑜𝑠2𝜃 ‒ 1)

θ and r are polar coordinates of a nucleus relative to the main magnetic axis (see picture above).
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For model calculations, θ = 0 and r = 10 Å were used;  was calculated as follows:Δ𝜒𝑎𝑥

, ,
Δ𝜒𝑎𝑥 = 𝜒𝑧𝑧 ‒

𝜒𝑥𝑥 + 𝜒𝑦𝑦

2
 

𝜒𝑎𝑎 =
𝑁𝐴𝑘𝑇

10
∂2

∂𝐵2
𝑎

𝑙𝑛(∑𝑖

𝑒
‒

𝐸𝑖
𝑘𝑇)

(a – x, y, z;  – energy of i-th level).𝐸𝑖

Details are given below on how the temperature dependence of the contact and the pseudocontact 

shifts was described by the expressions 4 and 5 (see main text) in a typical temperature range from 

200 to 400 K accessible in a common solution NMR experiment. Solid lines on the following plots 

are the fits by eq. 4b and 5b of the main text. Red and blue colors refer to the contact and the 

pseudocontact shifts, respectively.

S.1.1. Co(II), S = 3/2

A) gx = gy = 2.30, gz = 2.17, D = +12.7 cm–1.1 

B) gx = gy = 2.22, gz = 2.86, D = –95 cm–1.2
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C) g = 2.06, L = 1, λ = –161 cm–1, σ = 1.35, Δ = 663 cm–1.3

D) g = 2, L = 1, λ = –136 cm–1, σ = 1.25, Δ = –502 cm–1.4
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S.1.2. Fe(III), S = 1/2

A) gx = gy = 2, gz = 3

B) gx = gy = gz = 2 , L = 1, λ = –460 cm–1, σ = 0.2, Δ = –1000 cm–1
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S.1.3. Fe(II), S = 2

A) gx = 2.02, gy = 2.00, gz = 2.08, D = –7.28 cm–1.5

A) gx = gy = 2.18, gz = 2.023, D = +11.34 cm–1.6
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S.2. Detailed derivation of the RPS approach.

The following assumptions given by the equations 4a and 5a of the main text are used:

(4a),𝛿𝑐(𝑇) = 𝑎𝑇 ‒ 1

(5a).𝛿𝑝𝑐(𝑇) = 𝑏1𝑇 ‒ 1 + 𝑏2𝑇 ‒ 2

Below is the proof of the equations 4b and 5b of the main text:

(4b),Δ𝑐(𝑇) = 𝑇𝑚𝑖𝑛𝑇 ‒ 1

(5b).Δ𝑝𝑐(𝑇) = 𝑇𝑚𝑖𝑛𝑇 ‒ 1 + 𝑏 ∙ (𝑇 ‒ 2 ‒ 𝑇 ‒ 1
𝑚𝑖𝑛𝑇 ‒ 1)

Reduced paramagnetic shift (RPS) for a contact or pseudocontact shift is equal to:

,
Δ𝑐(𝑇) =

𝛿𝑐(𝑇)

𝛿𝑐(𝑇𝑚𝑖𝑛)
=

𝑎𝑇 ‒ 1

𝛿𝑐(𝑇𝑚𝑖𝑛)
= 𝑎'𝑇 ‒ 1

.
Δ𝑝𝑐(𝑇) =

𝛿𝑝𝑐(𝑇)

𝛿𝑝𝑐(𝑇𝑚𝑖𝑛)
=

𝑏1𝑇 ‒ 1 + 𝑏2𝑇 ‒ 2

𝛿𝑝𝑐(𝑇𝑚𝑖𝑛)
= 𝑏 '

1𝑇 ‒ 1 + 𝑏 '
2𝑇 ‒ 2

By the definition:

.Δ𝑐(𝑇𝑚𝑖𝑛) = Δ𝑝𝑐(𝑇𝑚𝑖𝑛) = 1

The constant  can be expressed as:𝑎'

, .Δ𝑐(𝑇𝑚𝑖𝑛) = 1 = 𝑎'𝑇 ‒ 1
𝑚𝑖𝑛 𝑎' = 𝑇𝑚𝑖𝑛

Using the above expression, the equation 4b becomes as follows:

. (4b).Δ𝑐(𝑇) = 𝑇𝑚𝑖𝑛𝑇 ‒ 1

The constant  can be expressed as:𝑏 '
1

, .Δ𝑝𝑐(𝑇𝑚𝑖𝑛) = 1 = 𝑏 '
1𝑇 ‒ 1

𝑚𝑖𝑛 + 𝑏 '
2𝑇 ‒ 2

𝑚𝑖𝑛 𝑏 '
1 = 𝑇𝑚𝑖𝑛 ‒ 𝑏 '

2𝑇 ‒ 1
𝑚𝑖𝑛

Using the above expression, the equation 5b becomes as follows:

.Δ𝑝𝑐(𝑇) = (𝑇𝑚𝑖𝑛 ‒ 𝑏 '
2𝑇 ‒ 1

𝑚𝑖𝑛)𝑇 ‒ 1 + 𝑏 '
2𝑇 ‒ 2 = 𝑇𝑚𝑖𝑛𝑇 ‒ 1 + 𝑏 '

2 ∙ (𝑇 ‒ 2 ‒ 𝑇 ‒ 1
𝑚𝑖𝑛𝑇 ‒ 1)

By changing  to  for simplicity:𝑏 '
2 𝑏



9

. (5b).Δ𝑝𝑐(𝑇) = 𝑇𝑚𝑖𝑛𝑇 ‒ 1 + 𝑏 ∙ (𝑇 ‒ 2 ‒ 𝑇 ‒ 1
𝑚𝑖𝑛𝑇 ‒ 1)

S.2.1. The case 1: the signs of  and  are the same.𝛿𝑐 𝛿𝑝𝑐

The absolute value of the pseudocontact shift is expressed as follows (eq. 7 of the main text):

(7).
𝜂 =

|𝛿𝑝𝑐(𝑇𝑚𝑖𝑛)|
|𝛿𝑝𝑐(𝑇𝑚𝑖𝑛)| + |𝛿𝑐(𝑇𝑚𝑖𝑛)|

The equation (7) takes the following form:

. (S1)
𝜂 =

𝛿𝑝𝑐(𝑇𝑚𝑖𝑛)
𝛿𝑝𝑐(𝑇𝑚𝑖𝑛) + 𝛿𝑐(𝑇𝑚𝑖𝑛)

=
𝛿𝑝𝑐(𝑇𝑚𝑖𝑛)
𝛿𝑝𝑎𝑟(𝑇𝑚𝑖𝑛)

Then, the RPS temperature dependence of the total paramagnetic shift is equal to:

. (S2)
Δ𝑝𝑎𝑟(𝑇) =

𝛿𝑝𝑎𝑟(𝑇)

𝛿𝑝𝑎𝑟(𝑇𝑚𝑖𝑛)
=

𝛿𝑝𝑐(𝑇)

𝛿𝑝𝑎𝑟(𝑇𝑚𝑖𝑛)
+

𝛿𝑐(𝑇)

𝛿𝑝𝑎𝑟(𝑇𝑚𝑖𝑛)

Given eq. (S1), the equation (S2) is transformed as follows:

.
Δ𝑝𝑎𝑟(𝑇) =

𝛿𝑝𝑐(𝑇)

𝛿𝑝𝑐(𝑇𝑚𝑖𝑛)
∙ 𝜂 +

𝛿𝑐(𝑇)

𝛿𝑐(𝑇𝑚𝑖𝑛)
∙ (1 ‒ 𝜂) = Δ𝑝𝑐(𝑇) ∙ 𝜂 + Δ𝑐(𝑇) ∙ (1 ‒ 𝜂)

(S3)

The temperature dependences of  and  are as follows (equations 4b and 5b):Δ𝑐(𝑇) Δ𝑝𝑐(𝑇)

Δ𝑝𝑎𝑟(𝑇) =  𝜂 ∙ [𝑇𝑚𝑖𝑛𝑇 ‒ 1 + 𝑏 ∙ (𝑇 ‒ 2 ‒ 𝑇 ‒ 1
𝑚𝑖𝑛𝑇 ‒ 1)] + (1 ‒ 𝜂) ∙ [𝑇𝑚𝑖𝑛𝑇 ‒ 1] =  

(S4).
= (𝑇𝑚𝑖𝑛 ‒

𝜂𝑏
𝑇𝑚𝑖𝑛

) ∙ 𝑇 ‒ 1 + 𝜂𝑏 ∙ 𝑇 ‒ 2 

The RPS temperature dependence of the total paramagnetic shift is considered as a quadratic 

dependence, as follows from the combination of the equations S3, 4b and 5b:

(S5).Δ𝑝𝑎𝑟(𝑇) = 𝐴 ∙ 𝑇 ‒ 1 + 𝐵 ∙ 𝑇 ‒ 2

By the comparison of (S4) and (S5), the expression for the absolute value of the pseudocontact 

shift becomes:

. (S6)
𝜂 =

𝑇𝑚𝑖𝑛 ∙ (𝑇𝑚𝑖𝑛 ‒ 𝐴)
𝑏

=
𝐵
𝑏
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Given the expression for the pseudocontact shift (3), the total paramagnetic shift at the lowest 

temperature is equal to:

. (S7)
𝛿𝑝𝑎𝑟(𝑇𝑚𝑖𝑛) =

𝛿𝑝𝑐(𝑇𝑚𝑖𝑛)
𝜂

=
(3𝑐𝑜𝑠2𝜃 ‒ 1) ∙ Δ𝜒(𝑇𝑚𝑖𝑛) ∙ 𝑏

12𝜋𝑟3 ∙ 𝐵

Finally, the expression for the total paramagnetic shift at any temperature is:

.
𝛿𝑝𝑎𝑟(𝑇) = Δ𝑝𝑎𝑟(𝑇) ∙ 𝛿𝑝𝑎𝑟(𝑇𝑚𝑖𝑛) = (𝐴 ∙ 𝑇 ‒ 1 + 𝐵 ∙ 𝑇 ‒ 2) ∙

(3𝑐𝑜𝑠2𝜃 ‒ 1) ∙ Δ𝜒(𝑇𝑚𝑖𝑛) ∙ 𝑏

12𝜋𝑟3 ∙ 𝐵

(S8)

S.2.1. The case 2: signs of  and  are opposite.𝛿𝑐 𝛿𝑝𝑐

The equation (7) takes the following form:

(S9)
𝜂 =

𝛿𝑝𝑐(𝑇𝑚𝑖𝑛)
𝛿𝑝𝑐(𝑇𝑚𝑖𝑛) ‒ 𝛿𝑐(𝑇𝑚𝑖𝑛)

Therefore, the total paramagnetic shift at the lowest temperature can be expressed by two ways:

. (S10)
𝛿𝑝𝑎𝑟(𝑇𝑚𝑖𝑛) =

𝛿𝑝𝑐(𝑇𝑚𝑖𝑛)
𝜂

∙ (2𝜂 ‒ 1) =‒
𝛿𝑐(𝑇𝑚𝑖𝑛)

1 ‒ 𝜂
∙ (2𝜂 ‒ 1)

Given (S2) and (S10), the expression for the total paramagnetic shift at any temperature becomes:

Δ𝑝𝑎𝑟(𝑇) =
𝛿𝑝𝑐(𝑇)

𝛿𝑝𝑎𝑟(𝑇𝑚𝑖𝑛)
+

𝛿𝑐(𝑇)

𝛿𝑝𝑎𝑟(𝑇𝑚𝑖𝑛)
=

𝛿𝑝𝑐(𝑇) ∙ 𝜂

𝛿𝑝𝑐(𝑇𝑚𝑖𝑛) ∙ (2𝜂 ‒ 1)
‒

𝛿𝑐(𝑇) ∙ (1 ‒ 𝜂)

𝛿𝑐(𝑇𝑚𝑖𝑛) ∙ (2𝜂 ‒ 1)
=  

. (S11)
= Δ𝑝𝑐(𝑇)

𝜂
(2𝜂 ‒ 1)

‒ Δ𝑐(𝑇)
(1 ‒ 𝜂)

(2𝜂 ‒ 1)

The temperature dependences of  and  are as follows (equations 4b and 5b):Δ𝑐(𝑇) Δ𝑝𝑐(𝑇)

. (S12).
Δ𝑝𝑎𝑟(𝑇) = (𝑇𝑚𝑖𝑛 ‒

𝜂𝑏
𝑇𝑚𝑖𝑛(2𝜂 ‒ 1)) ∙ 𝑇 ‒ 1 +

𝜂𝑏
2𝜂 ‒ 1

∙ 𝑇 ‒ 2

By the comparison of (S5) and (S12), the expressions for the absolute value of the pseudocontact 

shift becomes:
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. (S13)

𝜂 =
𝐴 ‒ 𝑇𝑚𝑖𝑛

2(𝐴 ‒ 𝑇𝑚𝑖𝑛) +
𝑏

𝑇𝑚𝑖𝑛

=
𝐵

2𝐵 ‒ 𝑏

Given the expression for the pseudocontact shift (3) and the equation (S10), the total paramagnetic 

shift at the lowest temperature is equal to:

. (S14)
𝛿𝑝𝑎𝑟(𝑇𝑚𝑖𝑛) = 𝛿𝑝𝑐(𝑇𝑚𝑖𝑛)(2 ‒

1
𝜂) =

(3𝑐𝑜𝑠2𝜃 ‒ 1) ∙ Δ𝜒(𝑇𝑚𝑖𝑛)
12𝜋𝑟3

∙ (2 ‒
1
𝜂)

Finally, the expression for the total paramagnetic shift at any temperature is the same as in the first 

case:

. 
𝛿𝑝𝑎𝑟(𝑇) = Δ𝑝𝑎𝑟(𝑇) ∙ 𝛿𝑝𝑎𝑟(𝑇𝑚𝑖𝑛) = (𝐴 ∙ 𝑇 ‒ 1 + 𝐵 ∙ 𝑇 ‒ 2) ∙

(3𝑐𝑜𝑠2𝜃 ‒ 1) ∙ Δ𝜒(𝑇𝑚𝑖𝑛) ∙ 𝑏

12𝜋𝑟3 ∙ 𝐵

(S15)
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S.3 Correlation between convexity/concavity of an RPS temperature dependence and the 

signs of total paramagnetic shift (δpar) and its pseudocontact component (δpc).

Hypothesis: If the RPS temperature dependence is concave, then the signs of the total 

paramagnetic shift (δpar) and its pseudocontact component (δpc) are the same, and vice versa, if it 

is convex, then the signs of these shifts are opposite.

Proof: The convexity/concavity of the RPS temperature dependence is defined by the second 

derivative, which is as follows (given S4 and S12):

(S16)

∂2Δ𝑝𝑎𝑟(𝑇)

∂(𝑇 ‒ 1)2
= 2𝜂𝑏

for the first case described in the S.2 (signs of  and  are the same) and𝛿𝑐 𝛿𝑝𝑐

(S17)

∂2Δ𝑝𝑎𝑟(𝑇)

∂(𝑇 ‒ 1)2
=

2𝜂𝑏
2𝜂 ‒ 1

for the second case described in the S.2 (signs of  and  are opposite).𝛿𝑐 𝛿𝑝𝑐

As a rule, signs of D and Δg (g|| – g⊥) are opposite for d5-d9 transition ions due to their negative 

spin-orbit coupling [F.E. Mabbs and D. Collison Electron Paramagnetic Resonance of d Transition 

Metal Compounds-Elsevier Science (1992), ch. 10]. The value of D is negative and g|| > g⊥ in a so-

called ‘easy-axis’ case. Conversely, an ‘easy plane’ case corresponds to the positive D and g|| < 

g⊥. In both cases, the temperature dependence of the absolute value of the pseudocontact shift has 

a concave shape (i.e., b ≥ 0), as can be shown by applying simplified expressions for the 

pseudocontact shift [J. Chem. Phys. 142, 054108 (2015)] or direct calculations through spin-

Hamiltonian from section S.1. 

In the first case, the RPS temperature dependence is always concave ( ), and the 

∂2Δ𝑝𝑎𝑟(𝑇)

∂(𝑇 ‒ 1)2
> 0

signs of the total paramagnetic shift (δpar) and its pseudocontact component (δpc) are the same by 

the definition. Therefore, the hypothesis is proved for this case.

For the second case (signs of  and  are opposite), the RPS temperature dependence is concave 𝛿𝑐 𝛿𝑝𝑐

( ) at  > 0.5, so that the pseudocontact shift defines the sign of the total 

∂2Δ𝑝𝑎𝑟(𝑇)

∂(𝑇 ‒ 1)2
> 0

𝜂

paramagnetic shift, as it is larger (by the absolute value) than the contact shift.
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S.4. DFT-based approach for the analysis of NMR spectra

Quantum chemical calculations of the studied complexes were performed using ORCA package, 

v.4.2.7;8 X-ray diffraction geometries 2, 9-11 were chosen as a starting point for geometry 

optimization with the B3LYP functional, 12-14 15 the scalar relativistic zero-order regular 

approximation (ZORA),16 Grimme’s DFT-D3 dispersion correction 17 and the scalar 

relativistically recontracted (SARC) 18 version of the def2-TZVP basis set.19 To speed up the 

calculations, the RIJCOSX approximation20 with a def2/J fitting basis set21 was used. In all cases, 

extra tight thresholds for forces and displacements were used. 

The resulting geometries of the complexes were used to compute g-tensor and isotropic values of 

hyperfine interaction tensors  for each nucleus at the same level of theory (PBE0/def2-TZVP). 𝐴𝑖𝑠𝑜

Isotropic paramagnetic (contact) contribution  to the chemical shifts in the NMR spectra was 𝛿𝑐

evaluated through the following equation:22

,
𝛿𝑐 =

𝑆(𝑆 + 1)𝜇𝐵

3𝑘𝑇𝑔𝑁𝜇𝑁
∙ �̅� ∙ 𝐴𝑖𝑠𝑜

(  – calculated rotationally averaged electronic g-value,  – nuclear g-value,  – Bohr �̅� 𝑔𝑁 𝜇𝐵

magneton,  – nuclear magneton,  – thermal energy).𝜇𝑁 𝑘𝑇

The value for the anisotropy of the magnetic susceptibility Δχ was estimated by fitting the observed 

chemical shifts in the NMR spectra to those estimated by the following equation:

,
𝛿𝑂𝐵𝑆 = 𝛿𝐷𝐼𝐴 + 𝛿𝑐 +

1

12𝜋𝑟3[Δ𝜒(3𝑐𝑜𝑠2𝜃 ‒ 1)]

In this expression, Δχ stands for the axial anisotropy of the magnetic susceptibility tensor (χ–

tensor). The polar coordinates of the nuclei r and   were taken from the optimized geometries of 

the complexes (as explained above), and the diamagnetic contribution ( ) was taken as the 𝛿𝐷𝐼𝐴

chemical shift from the closest diamagnetic analogue, such as a free ligand or an isostructural 

complex with a diamagnetic metal ion.
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S.5. NMR spectra

1H NMR spectra were acquired via Bruker Avance 300 NMR spectrometer (300.15 MHz). 

Chemical shift values were referenced by residual signal of a solvent (CD2Cl2 – 5.32 ppm; CD3CN 

– 1.94 ppm), which allowed to avoid susceptibility shifts. Sample temperature was calibrated using 

the standard Bruker reference (4% methanol in methanol-d4) in temperature range 190–300 K by 

the following equations:

190–230 K: T = (3.72 – Δ)/0.007143,

230–270 K: T = (3.92 – Δ)/0.008,

270–300 K: T = (4.109 – Δ)/0.008708

with Δ is the shift difference (ppm) between the CH3 and OH peaks.

Higher temperatures up to 345 K were calibrated using 100% ethylene glycol:

T = (4.637 – Δ)/0.009967

with Δ is the shift difference (ppm) between the CH2 and OH peaks.

Figure S1. Variable-temperature 1H NMR spectra of complex 1 in CD2Cl2 solution (300 MHz). 

Signals are assigned to nuclei as it is shown on the Scheme 1.
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Figure S2. Variable-temperature 1H NMR spectra of complex 2 in CD2Cl2 solution (300 MHz). 

Signals are assigned to nuclei as it is shown on the Scheme 1.

Figure S3. Variable-temperature 1H NMR spectra of complex 3 in CD3CN solution (300 MHz). 

Signals are assigned to nuclei as it is shown on the Scheme 1.
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Figure S4. Variable-temperature 1H NMR spectra of complex 4 in CD3CN solution (300 MHz). 

Signals are assigned to nuclei as it is shown on the Scheme 1.
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S.6. Synthesis

Complex 1. Potassium tris(3,5-dimethyl-1-pyrazolyl)borate (0.4 mmol, 100 mg) and FeCl3·6H2O 

(0.2 mmol, 54 mg) were added to methanol (5 mL). In 30 min, NaBF4 (0.21 mmol, 23 mg) was 

added to the resulting red solution, which was then stirred for 30 min. The solution was filtered 

and evaporated to dryness. Crude product was recrystallized by the liquid diffusion of diethyl ether 

into a methanol solution to produce red crystals. Yield: 99 mg (87%). Elemental analysis: calcd 

(%) for C18H20B2CoN12 (2): C (38.01), N (29.56), H (3.54); found C (38.15), N (29.43), H (3.65). 
1H NMR (300 MHz, 305 K, CD2Cl2): –47.6 (s, 2H, 3), –10.83 (s, 2H, 4), –6.85 (s, 2H, 5), 35.9 (s, 

2H, ВН).

Complexes 2–4 were synthesized as reported earlier.2, 10, 11 

Complex 2: 1H NMR (300 MHz, 298 K, CD2Cl2): δ, ppm = – 2.50 (s, 3H, 3-Py), 2.42 (s, 9H, CH3), 

15.12 (s, 3H, 4-Py), 25.71 (s, 1H, p-Ph), 29.93 (s, 2H, m-Ph), 67.86 (s, 2H, o-Ph), 80.12 (s, 3H, 5-

Py), 396.17 (br. s, 3H, 6-Py). 

Complex 3: 1H NMR (300 MHz, 298 K, CD3CN): δ(ppm) = 2.04 (p-Py, s, 2H), 3.54 (Me, s, 12H), 

9.09(o-Ph(Me), d, 3JHH = 5.8 Hz, 8H), 11.42 (m-Ph(Me), d, 3JHH = 5.8 Hz, 8H), 36.07 (m-Py, br. 

s, 4H), 60.78 (Pr, br. s, 4H), 84.06 (NH, br. s, 4H). 

Complex 4: 1H NMR (300 MHz, 290 K, CD3CN,): δ = 59.74 (s, 4H, 3), 56.04 (s, 4H, 2), 27.44 (s, 

2H, 1), 18.71 (s, 4H, 4), 11.63 (s, 4H, 7), 8.80 (s, 8H, 6), −9.25 (s, 8H, 5).
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