Supplementary information file

"Analysis of reduced paramagnetic shifts as an effective tool in NMR spectroscopy"

Alexander A. Pavlov, Valentin V. Novikov, Igor A. Nikovskiy, Elizaveta K. Melnikova, Yulia V. Nelyubina, Dmitry Y. Aleshin.

Table of Content

S.1. Derivation of the equations for the temperature dependence of both the contact and pseudocontact shifts within the spin-Hamiltonian approach.
S.2. Detailed derivation of the RPS approach.
S.3. Correlation between convexity/concavity of an RPS temperature dependence and the signs of total paramagnetic shift ($\delta^{p a r}$) and its pseudocontact component ($\delta^{p c}$).
S.4. DFT-based approach for the analysis of NMR spectra
S.5. NMR spectra
S.6. Synthesis
S.7. References

S.1. Derivation of the equations for the temperature dependence of both the contact and pseudocontact shifts within the spin-Hamiltonian approach.

Depending on the represented parameters, the following spin-Hamiltonians were used:

$$
\begin{gathered}
\hat{H}=D\left(\hat{S}_{z}^{2}-\frac{1}{3} \hat{S}^{2}\right)+\mu_{B} B \cdot g \cdot \hat{S}+A_{i s o} \tilde{I} \cdot \hat{S} \\
\hat{H}=\sigma \lambda \hat{L} \cdot \hat{S}+\Delta\left(3 \hat{L}_{z}^{2}-\hat{L}^{2}\right)+\mu_{B} B(-\sigma \mathcal{L}+g \hat{S})+A_{i s o} \tilde{I} \cdot \hat{S} .
\end{gathered}
$$

(D - zero-field splitting energy; $\mathcal{S}^{\text {and }} L_{\text {- electronic spin and orbital operators, }} \hat{S}_{z}$ and $\mathcal{L}_{z-\text { their }}$ projections; ${ }^{I}$ - nuclear spin operator; B - external magnetic field of 14.1 T as observed in an NMR spectrometer with the proton Larmor frequency of $600 \mathrm{MHz} ;{ }_{B}$ - Borh magneton; g - electronic g-tensor; ${ }^{{ }_{i s o}}$ - isotropic value of hyperfine interaction; λ - spin-orbit coupling; σ_{-}orbital reduction factor; Δ_{-}crystal field parameter).

The contact shift was calculated by the following equation:

$$
\delta^{C S}=\frac{\sum v_{i} \cdot \exp \left(-E_{i} / k T\right)}{\sum \exp \left(-E_{i} / k T\right)}-v_{0}
$$

(${ }^{v_{i}}$ - frequency of i-th Kramers doublet; E_{i} - energy of i-th Kramers doublet; ${ }^{v_{0}}$ - Larmor frequency of a nucleus in the external magnetic field without any interactions with electrons (600 $\mathrm{MHz})$).

The pseudocontact shift was calculated by the following equation:
$\delta^{p c}=\frac{1}{12 \pi r^{3}} \Delta \chi_{a x}\left(3 \cos ^{2} \theta-1\right)$

θ and r are polar coordinates of a nucleus relative to the main magnetic axis (see picture above).

For model calculations, $\theta=0$ and $r=10 \AA$ were used; $\Delta \chi_{a x}$ was calculated as follows:

$$
\Delta \chi_{a x}=\chi_{z z}-\frac{\chi_{x x}+\chi_{y y}}{2}, \chi_{a a}=\frac{N_{A} k T \partial^{2}}{10 \partial B_{a}^{2}} \ln \left(\sum_{i} e^{-\frac{E_{i}}{k T}}\right)
$$

$\left(a-\mathrm{x}, \mathrm{y}, \mathrm{z} ;{ }^{E_{i}}\right.$ energy of i-th level).
Details are given below on how the temperature dependence of the contact and the pseudocontact shifts was described by the expressions 4 and 5 (see main text) in a typical temperature range from 200 to 400 K accessible in a common solution NMR experiment. Solid lines on the following plots are the fits by eq. 4 b and 5 b of the main text. Red and blue colors refer to the contact and the pseudocontact shifts, respectively.

S.1.1. $\mathbf{C o}(\mathrm{II}), \mathrm{S}=\mathbf{3 / 2}$

A) $g_{x}=g_{y}=2.30, g_{z}=2.17, D=+12.7 \mathrm{~cm}^{-1} .{ }^{1}$

B) $g_{x}=g_{y}=2.22, g_{z}=2.86, D=-95 \mathrm{~cm}^{-1} .{ }^{2}$

C) $g=2.06, \mathrm{~L}=1, \lambda=-161 \mathrm{~cm}^{-1}, \sigma=1.35, \Delta=663 \mathrm{~cm}^{-1}$. ${ }^{3}$

D) $\mathrm{g}=2, \mathrm{~L}=1, \lambda=-136 \mathrm{~cm}^{-1}, \sigma=1.25, \Delta=-502 \mathrm{~cm}^{-1} .4$

S.1.2. $\mathrm{Fe}(\mathrm{III}), \mathrm{S}=\mathbf{1 / 2}$
A) $g_{x}=g_{y}=2, g_{z}=3$

B) $\mathrm{g}_{\mathrm{x}}=\mathrm{g}_{\mathrm{y}}=\mathrm{g}_{\mathrm{z}}=2, \mathrm{~L}=1, \lambda=-460 \mathrm{~cm}^{-1}, \sigma=0.2, \Delta=-1000 \mathrm{~cm}^{-1}$

S.1.3. $\mathrm{Fe}(\mathrm{II}), \mathrm{S}=2$
A) $\mathrm{g}_{\mathrm{x}}=2.02, \mathrm{~g}_{\mathrm{y}}=2.00, \mathrm{~g}_{\mathrm{z}}=2.08, \mathrm{D}=-7.28 \mathrm{~cm}^{-1} .^{5}$

A) $\mathrm{g}_{\mathrm{x}}=\mathrm{g}_{\mathrm{y}}=2.18, \mathrm{~g}_{\mathrm{z}}=2.023, \mathrm{D}=+11.34 \mathrm{~cm}^{-1} .^{6}$

S.2. Detailed derivation of the RPS approach.

The following assumptions given by the equations $4 a$ and $5 a$ of the main text are used:
$\delta_{c}(T)=a T^{-1}$
$\delta_{p c}(T)=b_{1} T^{-1}+b_{2} T^{-2}$
Below is the proof of the equations $4 b$ and $5 b$ of the main text:
$\Delta_{c}(T)=T_{\min } T^{-1}$
$\Delta_{p c}(T)=T_{\min } T^{-1}+b \cdot\left(T^{-2}-T_{\min }^{-1} T^{-1}\right)$
Reduced paramagnetic shift (RPS) for a contact or pseudocontact shift is equal to:
$\Delta_{c}(T)=\frac{\delta_{c}(T)}{\delta_{c}\left(T_{\min }\right)}=\frac{a T^{-1}}{\delta_{c}\left(T_{\min }\right)}=a^{\prime} T^{-1}$,
$\Delta_{p c}(T)=\frac{\delta_{p c}(T)}{\delta_{p c}\left(T_{\text {min }}\right)}=\frac{b_{1} T^{-1}+b_{2} T^{-2}}{\delta_{p c}\left(T_{\text {min }}\right)}=b_{1}^{\prime} T^{-1}+b_{2}^{\prime} T^{-2}$.
By the definition:
$\Delta_{c}\left(T_{\min }\right)=\Delta_{p c}\left(T_{\min }\right)=1$.
The constant a^{\prime} can be expressed as:
$\Delta_{c}\left(T_{\text {min }}\right)=1=a^{\prime} T_{\text {min }}^{-1}, a^{\prime}=T_{\text {min }}$.
Using the above expression, the equation 4 b becomes as follows:
$\Delta_{c}(T)=T_{\text {min }} T^{-1}$.

The constant ${ }^{\prime}{ }_{1}^{\prime}$ can be expressed as:
$\Delta_{p c}\left(T_{\text {min }}\right)=1=b_{1}^{\prime} T_{\text {min }}^{-1}+b_{2}^{\prime} T_{\text {min }}^{-2}, b_{1}^{\prime}=T_{\text {min }}-b_{2}^{\prime} T_{\text {min }}^{-1}$.
Using the above expression, the equation 5 b becomes as follows:
$\Delta_{p c}(T)=\left(T_{\min }-b_{2}^{\prime} T_{\text {min }}^{-1}\right) T^{-1}+b_{2}^{\prime} T^{-2}=T_{\min } T^{-1}+b_{2}^{\prime} \cdot\left(T^{-2}-T_{\min }^{-1} T^{-1}\right)$.

By changing b_{2}^{\prime} to b for simplicity:
$\Delta_{p c}(T)=T_{\min } T^{-1}+b \cdot\left(T^{-2}-T_{\min }^{-1} T^{-1}\right) .(5 \mathrm{~b})$.

S.2.1. The case 1: the signs of δ^{c} and $\delta^{p c}$ are the same.

The absolute value of the pseudocontact shift is expressed as follows (eq. 7 of the main text):
$\eta=\frac{\left|\delta_{p c}\left(T_{\text {min }}\right)\right|}{\left|\delta_{p c}\left(T_{\text {min }}\right)\right|+\left|\delta_{c}\left(T_{\text {min }}\right)\right|}$
The equation (7) takes the following form:
$\eta=\frac{\delta_{p c}\left(T_{\text {min }}\right)}{\delta_{p c}\left(T_{\text {min }}\right)+\delta_{c}\left(T_{\text {min }}\right)}=\frac{\delta_{p c}\left(T_{\text {min }}\right)}{\delta_{\text {par }}\left(T_{\text {min }}\right) .}$
Then, the RPS temperature dependence of the total paramagnetic shift is equal to:
$\Delta_{p a r}(T)=\frac{\delta_{p a r}(T)}{\delta_{\text {par }}\left(T_{\min }\right)}=\frac{\delta_{p c}(T)}{\delta_{\text {par }}\left(T_{\min }\right)}+\frac{\delta_{c}(T)}{\delta_{\text {par }}\left(T_{\min }\right)}$.
Given eq. (S1), the equation (S2) is transformed as follows:

$$
\begin{equation*}
\Delta_{p a r}(T)=\frac{\delta_{p c}(T)}{\delta_{p c}\left(T_{\min }\right)} \cdot \eta+\frac{\delta_{c}(T)}{\delta_{c}\left(T_{\min }\right)} \cdot(1-\eta)=\Delta_{p c}(T) \cdot \eta+\Delta_{c}(T) \cdot(1-\eta) \tag{S3}
\end{equation*}
$$

The temperature dependences of $\Delta_{c}(T)$ and $\Delta_{p c}(T)$ are as follows (equations 4 b and 5 b):

$$
\begin{align*}
& \Delta_{\operatorname{par}}(T)=\eta \cdot\left[T_{\min } T^{-1}+b \cdot\left(T^{-2}-T_{\min }^{-1} T^{-1}\right)\right]+(1-\eta) \cdot\left[T_{\min } T^{-1}\right]= \\
& =\left(T_{\min }-\frac{\eta b}{T_{\min }}\right) \cdot T^{-1}+\eta b \cdot T^{-2} \tag{S4}
\end{align*}
$$

The RPS temperature dependence of the total paramagnetic shift is considered as a quadratic dependence, as follows from the combination of the equations $\mathrm{S} 3,4 \mathrm{~b}$ and 5 b :
$\Delta_{p a r}(T)=A \cdot T^{-1}+B \cdot T^{-2}$
By the comparison of (S4) and (S5), the expression for the absolute value of the pseudocontact shift becomes:
$\eta=\frac{T_{\min } \cdot\left(T_{\min }-A\right)}{b}=\frac{B}{b}$.

Given the expression for the pseudocontact shift (3), the total paramagnetic shift at the lowest temperature is equal to:
$\delta_{\text {par }}\left(T_{\min }\right)=\frac{\delta_{p c}\left(T_{\min }\right)}{\eta}=\frac{\left(3 \cos ^{2} \theta-1\right) \cdot \Delta \chi\left(T_{\min }\right) \cdot b}{12 \pi r^{3} \cdot B}$.

Finally, the expression for the total paramagnetic shift at any temperature is:

$$
\begin{equation*}
\delta_{\text {par }}(T)=\Delta_{\text {par }}(T) \cdot \delta_{\text {par }}\left(T_{\min }\right)=\left(A \cdot T^{-1}+B \cdot T^{-2}\right) \cdot \frac{\left(3 \cos ^{2} \theta-1\right) \cdot \Delta \chi\left(T_{\min }\right) \cdot b}{12 \pi r^{3} \cdot B} \tag{S8}
\end{equation*}
$$

S.2.1. The case 2: signs of δ^{c} and $\delta^{p c}$ are opposite.

The equation (7) takes the following form:
$\eta=\frac{\delta_{p c}\left(T_{\text {min }}\right)}{\delta_{p c}\left(T_{\text {min }}\right)-\delta_{c}\left(T_{\text {min }}\right)}$

Therefore, the total paramagnetic shift at the lowest temperature can be expressed by two ways:

$$
\begin{equation*}
\delta_{\text {par }}\left(T_{\min }\right)=\frac{\delta_{p c}\left(T_{\min }\right)}{\eta} \cdot(2 \eta-1)=-\frac{\delta_{c}\left(T_{\min }\right)}{1-\eta} \cdot(2 \eta-1) . \tag{S10}
\end{equation*}
$$

Given (S2) and (S10), the expression for the total paramagnetic shift at any temperature becomes:

$$
\begin{align*}
& \Delta_{\text {par }}(T)=\frac{\delta_{p c}(T)}{\delta_{\text {par }}\left(T_{\min }\right)}+\frac{\delta_{c}(T)}{\delta_{\text {par }}\left(T_{\min }\right)}=\frac{\delta_{p c}(T) \cdot \eta}{\delta_{p c}\left(T_{\min }\right) \cdot(2 \eta-1)}-\frac{\delta_{c}(T) \cdot(1-\eta)}{\delta_{c}\left(T_{\min }\right) \cdot(2 \eta-1)}= \\
& =\Delta_{p c}(T) \frac{\eta}{(2 \eta-1)}-\Delta_{c}(T) \frac{(1-\eta)}{(2 \eta-1)} . \tag{S11}
\end{align*}
$$

The temperature dependences of $\Delta_{c}(T)$ and $\Delta_{p c}(T)$ are as follows (equations 4 b and 5 b):

$$
\begin{equation*}
\Delta_{p a r}(T)=\left(T_{\min }-\frac{\eta b}{T_{\min }(2 \eta-1)}\right) \cdot T^{-1}+\frac{\eta b}{2 \eta-1} \cdot T^{-2} . \tag{S12}
\end{equation*}
$$

By the comparison of (S5) and (S12), the expressions for the absolute value of the pseudocontact shift becomes:

$$
\begin{equation*}
\eta=\frac{A-T_{\min }}{2\left(A-T_{\min }\right)+\frac{b}{T_{\min }}}=\frac{B}{2 B-b} \tag{S13}
\end{equation*}
$$

Given the expression for the pseudocontact shift (3) and the equation (S10), the total paramagnetic shift at the lowest temperature is equal to:

$$
\begin{equation*}
\delta_{p a r}\left(T_{\min }\right)=\delta_{p c}\left(T_{\min }\right)\left(2-\frac{1}{\eta}\right)=\frac{\left(3 \cos ^{2} \theta-1\right) \cdot \Delta \chi\left(T_{\min }\right)}{12 \pi r^{3}} \cdot\left(2-\frac{1}{\eta}\right) . \tag{S14}
\end{equation*}
$$

Finally, the expression for the total paramagnetic shift at any temperature is the same as in the first case:

$$
\begin{equation*}
\delta_{p a r}(T)=\Delta_{p a r}(T) \cdot \delta_{p a r}\left(T_{\min }\right)=\left(A \cdot T^{-1}+B \cdot T^{-2}\right) \cdot \frac{\left(3 \cos ^{2} \theta-1\right) \cdot \Delta \chi\left(T_{\min }\right) \cdot b}{12 \pi r^{3} \cdot B} \tag{S15}
\end{equation*}
$$

S. 3 Correlation between convexity/concavity of an RPS temperature dependence and the signs of total paramagnetic shift ($\delta^{p a r}$) and its pseudocontact component ($\delta^{p c}$).

Hypothesis: If the RPS temperature dependence is concave, then the signs of the total paramagnetic shift ($\left.\delta^{\text {par }}\right)$ and its pseudocontact component $\left(\delta^{p c}\right)$ are the same, and vice versa, if it is convex, then the signs of these shifts are opposite.

Proof: The convexity/concavity of the RPS temperature dependence is defined by the second derivative, which is as follows (given S4 and S12):
$\frac{\partial^{2} \Delta_{p a r}(T)}{\partial\left(T^{-1}\right)^{2}}=2 \eta b$
for the first case described in the $\mathbf{S .} 2$ (signs of δ^{c} and $\delta^{p c}$ are the same) and
$\frac{\partial^{2} \Delta_{p a r}(T)}{\partial\left(T^{-1}\right)^{2}}=\frac{2 \eta b}{2 \eta-1}$
for the second case described in the $\mathbf{S} .2$ (signs of δ^{c} and $\delta^{p c}$ are opposite).
As a rule, signs of D and $\Delta g\left(g_{\|}-g_{\perp}\right)$ are opposite for $d^{5}-d^{9}$ transition ions due to their negative spin-orbit coupling [F.E. Mabbs and D. Collison Electron Paramagnetic Resonance of d Transition Metal Compounds-Elsevier Science (1992), ch. 10]. The value of D is negative and $g_{\|}>g_{\perp}$ in a socalled 'easy-axis' case. Conversely, an 'easy plane' case corresponds to the positive D and $g_{\|}<$ g_{\perp}. In both cases, the temperature dependence of the absolute value of the pseudocontact shift has a concave shape (i.e., $b \geq 0$), as can be shown by applying simplified expressions for the pseudocontact shift [J. Chem. Phys. 142, 054108 (2015)] or direct calculations through spinHamiltonian from section S.1.

In the first case, the RPS temperature dependence is always concave $\left(\frac{\partial^{2} \Delta_{\text {par }}(T)}{\partial\left(T^{-1}\right)^{2}}>0\right.$), and the signs of the total paramagnetic shift ($\delta^{p a r}$) and its pseudocontact component ($\delta^{p c}$) are the same by the definition. Therefore, the hypothesis is proved for this case.

For the second case (signs of δ^{c} and $\delta^{p c}$ are opposite), the RPS temperature dependence is concave $\left.\frac{\partial^{2} \Delta_{p a r}(T)}{\left(\partial\left(T^{-1}\right)^{2}\right.}>0\right)$ paramagnetic shift, as it is larger (by the absolute value) than the contact shift.

S.4. DFT-based approach for the analysis of NMR spectra

Quantum chemical calculations of the studied complexes were performed using ORCA package, v.4.2. ${ }^{7.8}$ X-ray diffraction geometries ${ }^{2,}{ }^{9-11}$ were chosen as a starting point for geometry optimization with the B3LYP functional, ${ }^{12-14} 15$ the scalar relativistic zero-order regular approximation (ZORA), ${ }^{16}$ Grimme's DFT-D3 dispersion correction ${ }^{17}$ and the scalar relativistically recontracted (SARC) ${ }^{18}$ version of the def2-TZVP basis set. ${ }^{19}$ To speed up the calculations, the RIJCOSX approximation ${ }^{20}$ with a def2/J fitting basis set ${ }^{21}$ was used. In all cases, extra tight thresholds for forces and displacements were used.

The resulting geometries of the complexes were used to compute g-tensor and isotropic values of hyperfine interaction tensors $A_{\text {iso }}$ for each nucleus at the same level of theory (PBE0/def2-TZVP). Isotropic paramagnetic (contact) contribution δ_{c} to the chemical shifts in the NMR spectra was evaluated through the following equation: ${ }^{22}$

$$
\delta^{c}=\frac{S(S+1) \mu_{B}}{3 k T g_{N} \mu_{N}} \cdot \bar{g} \cdot A_{i s o},
$$

$\bar{g}-$ calculated rotationally averaged electronic g-value, g_{N} - nuclear g-value, μ_{B} - Bohr magneton, ${ }^{\mu_{-}}$nuclear magneton, $k T_{-}$thermal energy).

The value for the anisotropy of the magnetic susceptibility $\Delta \chi$ was estimated by fitting the observed chemical shifts in the NMR spectra to those estimated by the following equation:

$$
\delta_{O B S}=\delta^{D I A}+\delta^{c}+\frac{1}{12 \pi r^{3}}\left[\Delta \chi\left(3 \cos ^{2} \theta-1\right)\right],
$$

In this expression, $\Delta \chi$ stands for the axial anisotropy of the magnetic susceptibility tensor $(\chi-$ tensor). The polar coordinates of the nuclei r and θ were taken from the optimized geometries of the complexes (as explained above), and the diamagnetic contribution ($\delta^{D I A}$) was taken as the chemical shift from the closest diamagnetic analogue, such as a free ligand or an isostructural complex with a diamagnetic metal ion.

S.5. NMR spectra

${ }^{1} \mathrm{H}$ NMR spectra were acquired via Bruker Avance 300 NMR spectrometer (300.15 MHz). Chemical shift values were referenced by residual signal of a solvent $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}-5.32 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{CN}\right.$ -1.94 ppm), which allowed to avoid susceptibility shifts. Sample temperature was calibrated using the standard Bruker reference (4% methanol in methanol-d4) in temperature range $190-300 \mathrm{~K}$ by the following equations:
$190-230 \mathrm{~K}: \mathrm{T}=(3.72-\Delta) / 0.007143$,
$230-270 \mathrm{~K}: \mathrm{T}=(3.92-\Delta) / 0.008$,
$270-300 \mathrm{~K}: \mathrm{T}=(4.109-\Delta) / 0.008708$
with Δ is the shift difference (ppm) between the CH_{3} and OH peaks.
Higher temperatures up to 345 K were calibrated using 100\% ethylene glycol:
$\mathrm{T}=(4.637-\Delta) / 0.009967$
with Δ is the shift difference (ppm) between the CH_{2} and OH peaks.

Figure S1. Variable-temperature ${ }^{1} \mathrm{H}$ NMR spectra of complex 1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution (300 MHz). Signals are assigned to nuclei as it is shown on the Scheme 1.

Figure S2. Variable-temperature ${ }^{1} \mathrm{H}$ NMR spectra of complex $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution (300 MHz). Signals are assigned to nuclei as it is shown on the Scheme 1.

Figure S3. Variable-temperature ${ }^{1} \mathrm{H}$ NMR spectra of complex $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{CN}$ solution (300 MHz). Signals are assigned to nuclei as it is shown on the Scheme 1.

Figure S4. Variable-temperature ${ }^{1} \mathrm{H}$ NMR spectra of complex 4 in $\mathrm{CD}_{3} \mathrm{CN}$ solution (300 MHz).
Signals are assigned to nuclei as it is shown on the Scheme 1.

S.6. Synthesis

Complex 1. Potassium tris(3,5-dimethyl-1-pyrazolyl)borate ($0.4 \mathrm{mmol}, 100 \mathrm{mg}$) and $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.2 \mathrm{mmol}, 54 \mathrm{mg})$ were added to methanol (5 mL). In $30 \mathrm{~min}, \mathrm{NaBF}_{4}(0.21 \mathrm{mmol}, 23 \mathrm{mg})$ was added to the resulting red solution, which was then stirred for 30 min . The solution was filtered and evaporated to dryness. Crude product was recrystallized by the liquid diffusion of diethyl ether into a methanol solution to produce red crystals. Yield: 99 mg (87%). Elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~B}_{2} \mathrm{CoN}_{12}$ (2): C (38.01), N (29.56), $\mathrm{H}(3.54)$; found $\mathrm{C}(38.15), \mathrm{N}$ (29.43), H (3.65). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 305 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): -47.6 (s, 2H, 3), -10.83 (s, 2H, 4), -6.85 (s, 2H, 5), 35.9 (s, $2 \mathrm{H}, \mathrm{BH})$.

Complexes 2-4 were synthesized as reported earlier. ${ }^{2,10,11}$
Complex 2: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ, $\mathrm{ppm}=-2.50(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{Py}), 2.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$, 15.12 (s, 3H, 4-Py), 25.71 (s, 1H, $p-\mathrm{Ph}$), 29.93 (s, 2H, $m-\mathrm{Ph}$), 67.86 (s, 2H, o-Ph), 80.12 (s, 3H, 5Py), 396.17 (br. s, 3H, 6-Py).

Complex 3: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta(\mathrm{ppm})=2.04(p-\mathrm{Py}, \mathrm{s}, 2 \mathrm{H}), 3.54(\mathrm{Me}, \mathrm{s}, 12 \mathrm{H})$, $9.09\left(o-\mathrm{Ph}(\mathrm{Me}), \mathrm{d},{ }^{3} J_{\mathrm{HH}}=5.8 \mathrm{~Hz}, 8 \mathrm{H}\right), 11.42\left(m-\mathrm{Ph}(\mathrm{Me}), \mathrm{d},{ }^{3} J_{\mathrm{HH}}=5.8 \mathrm{~Hz}, 8 \mathrm{H}\right), 36.07(m-\mathrm{Py}, \mathrm{br}$. s, 4H), 60.78 (Pr, br. s, 4H), 84.06 (NH, br. s, 4H).

Complex 4: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 290 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$,): $\delta=59.74(\mathrm{~s}, 4 \mathrm{H}, 3$), $56.04(\mathrm{~s}, 4 \mathrm{H}, 2), 27.44(\mathrm{~s}$, $2 \mathrm{H}, 1), 18.71$ ($\mathrm{s}, 4 \mathrm{H}, 4$), 11.63 (s, 4H, 7), 8.80 (s, 8H, 6), -9.25 (s, 8H, 5).

S.7. References

1. Zadrozny, J. M.; Liu, J.; Piro, N. A.; Chang, C. J.; Hill, S.; Long, J. R. Slow magnetic relaxation in a pseudotetrahedral cobalt (II) complex with easy-plane anisotropy. Chemical Communications 2012, 48 (33), 3927-3929.
2. Pavlov, A. A.; Savkina, S. A.; Belov, A. S.; Nelyubina, Y. V.; Efimov, N. N.; Voloshin, Y. Z.; Novikov, V. V. Trigonal prismatic tris-pyridineoximate transition metal complexes: A cobalt (II) compound with high magnetic anisotropy. Inorganic chemistry 2017, 56 (12), 6943-6951.
3. Palacios, M. A.; Nehrkorn, J.; Suturina, E. A.; Ruiz, E.; Gómez-Coca, S.; Holldack, K.; Schnegg, A.; Krzystek, J.; Moreno, J. M.; Colacio, E. Analysis of magnetic anisotropy and the role of magnetic dilution in triggering single-molecule magnet (SMM) behavior in a family of CoIIYIII dinuclear complexes with easy-plane anisotropy. Chemistry-A European Journal 2017, 23 (48), 11649-11661.
4. Wu, Y.; Tian, D.; Ferrando-Soria, J.; Cano, J.; Yin, L.; Ouyang, Z.; Wang, Z.; Luo, S.; Liu, X.; Pardo, E. Modulation of the magnetic anisotropy of octahedral cobalt (II) single-ion magnets
by fine-tuning the axial coordination microenvironment. Inorganic Chemistry Frontiers 2019, 6 (3), 848-856.
5. Novitchi, G. n.; Jiang, S.; Shova, S.; Rida, F.; Hlavička, I.; Orlita, M.; Wernsdorfer, W.; Hamze, R.; Martins, C.; Suaud, N. From positive to negative zero-field splitting in a series of strongly magnetically anisotropic mononuclear metal complexes. Inorganic chemistry 2017, 56 (24), 14809-14822.
6. Telser, J.; van Slageren, J.; Vongtragool, S.; Dressel, M.; Reiff, W. M.; Zvyagin, S.; Ozarowski, A.; Krzystek, J. High-frequency/high-field EPR spectroscopy of the high-spin ferrous ion in hexaaqua complexes. Magnetic Resonance in Chemistry 2005, 43 (S1), S130-S139.
7. Neese, F. The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2 (1), 73-78.
8. Neese, F. Software update: the ORCA program system, version 4.0. Wiley Interdisciplinary Reviews: Computational Molecular Science 2018, 8 (1), e1327.
9. Cho, S.-H.; Whang, D.-M.; Kim, K.-M. Synthesis and Structure of Bis [hydrotris (1pyrazolyl) borato] iron (III) Nitrate. Bulletin of the Korean Chemical Society 1991, 12 (1), 107109.
10. Pavlov, A. A.; Aleshin, D. Y.; Nikovskiy, I. A.; Polezhaev, A. V.; Efimov, N. N.; Korlyukov, A. A.; Novikov, V. V.; Nelyubina, Y. V. New Spin-Crossover Complexes of Substituted 2, 6-Bis (pyrazol-3-yl) pyridines. European Journal of Inorganic Chemistry 2019, 2019 (23), 2819-2829.
11. Nelyubina, Y.; Polezhaev, A.; Pavlov, A.; Aleshin, D.; Savkina, S.; Efimov, N.; Aliev, T.; Novikov, V. Intramolecular Spin State Locking in Iron (II) 2, 6-Di (pyrazol-3-yl) pyridine Complexes by Phenyl Groups: An Experimental Study. Magnetochemistry 2018, 4 (4), 46.
12. Antony, J.; Grimme, S. Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Physical Chemistry Chemical Physics 2006, 8 (45), 5287-5293.
13. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B 1988, 37 (2), 785.
14. Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of physics 1980, 58 (8), 1200-1211.
15. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of physical chemistry 1994, 98 (45), 11623-11627.
16. van Wüllen, C. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. The Journal of chemical physics 1998, 109 (2), 392-399.
17. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements $\mathrm{H}-\mathrm{Pu}$. The Journal of chemical physics 2010, 132 (15), 154104.
18. Pantazis, D. A.; Chen, X.-Y.; Landis, C. R.; Neese, F. All-electron scalar relativistic basis sets for third-row transition metal atoms. Journal of chemical theory and computation 2008, 4 (6), 908-919.
19. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn : Design and assessment of accuracy. Physical Chemistry Chemical Physics 2005, 7 (18), 3297-3305.
20. Neese, F. An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. Journal of computational chemistry 2003, 24 (14), 1740-1747.
21. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Physical chemistry chemical physics 2006, 8 (9), 1057-1065.
22. Kaupp, M.; Buh1, M.; Malkin, V. G. Calculation of NMR and EPR Parameters. Wiley Online Library: 2004.
