Electronic Supplementary Information

Nonionic Omnisoluble Photosensitizer Reference Material

for the Estimation of Singlet Oxygen Quantum Yield

Daniel T. Payne^{1,2}, Jan Hynek², Jan Labuta² and Jonathan P. Hill^{2,*}

¹International Center for Young Scientists, National Institute for Materials Science, Namiki 1-

1, Tsukuba, Ibaraki 305-0044, Japan.

² International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.

Scheme S1. Preparation of **TEG₁₂PH**₂ from tetrakis(3,4,5-trimethoxyphenyl)porphyrin. Tetrakis(3,4,5-trihydroxyphenyl)porphyrin dihydrobromide was isolated by filtration and used without further purification. Triethylene glycol monomethyl ether tosylate was used as reaction solvent in the O-alkylation step.

Solvent	λ_{max}	ε / mol ⁻¹ dm³ cm ⁻¹	
Acetone	422, 515, 551, 592, 648	2.67 · 10 ⁵ , 12300, 5700, 3700, 2900	
Acetonitrile	421, 515, 551, 590, 647	2.86 · 10 ⁵ , 12600, 5200, 3600, 2700	
Chloroform	425, 518, 555, 592, 648	2.98 · 10 ⁵ , 12900, 5800, 4200, 3000	
Methanol	420, 516, 551, 590, 648	2.89 · 10⁵, 13000, 5800, 3900, 2800	
Toluene	426, 518, 554, 593, 651	2.85 · 10 ⁵ , 11700, 5600, 3700, 3000	
Water	409, 420, 519, 556, 589, 648	1.18 · 10 ⁵ , 1.39 · 10 ⁵ , 9000, 4300, 3100,	
		2100	

 Table S1. Absorption maxima and extinction coefficients of Teg12PH2 in different solvents.

Table S2. Absorption maxima and extinction coefficients of Teg₁₂PZn in different solvents.

Solvent	λ_{max}	ε / mol ⁻¹ dm ³ cm ⁻¹	
Acetone	427, 557, 597	', 557, 597 3.89 · 10 ⁵ , 14400, 5400	
Acetonitrile	426, 557, 597	4.01 · 10 ⁵ , 14900, 5500	
Chloroform	428, 556, 596	4.11 · 10 ⁵ , 15900, 4800	
Methanol	426, 558, 598	5.00 · 10 ⁵ , 17800, 6700	
Toluene	429, 556, 597	3.64 · 10 ⁵ , 14300, 5000	
Water	427, 560, 600	2.56·10⁵, 14000, 6100	

Table S3. Fluorescence lifetimes of Teg₁₂PH₂ in different solvents under an atmosphere of argon, air or oxygen.

Solvent	Argon	Air	Oxygen
Acetone	9.85 ns	8.15 ns	5.51 ns
Acetonitrile	9.35 ns	7.92 ns	5.09 ns
Chloroform	7.51 ns	6.88 ns	5.42 ns
Methanol	9.43 ns	8.09 ns	5.27 ns
Toluene	9.51 ns	8.26 ns	5.71 ns
Water	9.58 ns	9.65 ns	9.24 ns

Figure S1. a. UV-Vis absorption spectrum of $TEG_{12}PH_2$ (black solid lines) and TPP (blue dashed line) in acetone with matched absorption intensity at 414 nm. b. ${}^{1}O_2$ phosphorescence spectrum of $TEG_{12}PH_2$ (black solid lines) and TPP (blue dashed line) in acetone after excitation at 414 nm. c. UV-Vis absorption spectrum of $TEG_{12}PH_2$ (5.14 × 10⁻⁶ M) in acetone. d. UV-Vis absorption spectrum of $TEG_{12}PH_2$ in acetone used to determine extinction coefficient (inset). e. UV-Vis absorption spectrum of $TEG_{12}PH_2$ in acetone used to determine extinction to determine extinction spectrum of serial dilutions of $TEG_{12}PZn$ (3.99 × 10⁻⁶ M) in acetone. f. UV-Vis absorption spectrum of serial dilutions of $TEG_{12}PZn$ in acetone used to determine extinction coefficient (inset).

Figure S2. a. UV-Vis absorption spectrum of $TEG_{12}PH_2$ (black solid lines) and Ru(bpy)₃Cl₂ (blue dashed line) in acetonitrile with matched absorption intensity at 424 nm. b. ${}^{1}O_2$ phosphorescence spectrum of $TEG_{12}PH_2$ (black solid lines) and Ru(bpy)₃Cl₂ (blue dashed line) in acetonitrile after excitation at 424 nm. c. UV-Vis absorption spectrum of $TEG_{12}PH_2$ (6.52 × 10^{-6} M) in acetonitrile. d. UV-Vis absorption spectrum of serial dilutions of $TEG_{12}PH_2$ in acetonitrile used to determine extinction coefficient (inset). e. UV-Vis absorption spectrum of $TEG_{12}PZn$ (5.03 × 10^{-6} M) in acetonitrile. f. UV-Vis absorption spectrum of serial dilutions of $TEG_{12}PZn$ in acetonitrile used to determine extinction coefficient (inset).

Figure S3. a. UV-Vis absorption spectrum of **TEG₁₂PH₂** (black solid lines) and TPP (blue dashed line) in chloroform with matched absorption intensity at 421 nm. b. ${}^{1}O_{2}$ phosphorescence spectrum of **TEG₁₂PH₂** (black solid lines) and TPP (blue dashed line) in chloroform after excitation at 421 nm. c. UV-Vis absorption spectrum of **TEG₁₂PH₂** (4.23 × 10⁻⁶ M) in chloroform. d. UV-Vis absorption spectrum of serial dilutions of **TEG₁₂PH₂** in chloroform used to determine extinction coefficient (inset). e. UV-Vis absorption spectrum of **TEG₁₂PZn** (4.11 × 10⁻⁶ M) in chloroform. f. UV-Vis absorption spectrum of serial dilutions of **TEG₁₂PZn** in chloroform used to determine extinction coefficient (inset).

Figure S4. a. UV-Vis absorption spectrum of $TEG_{12}PH_2$ (black solid lines) and Ru(bpy)₃Cl₂ (blue dashed line) in methanol with matched absorption intensity at 424 nm. b. ${}^{1}O_2$ phosphorescence spectrum of $TEG_{12}PH_2$ (black solid lines) and Ru(bpy)₃Cl₂ (blue dashed line) in methanol after excitation at 424 nm. c. UV-Vis absorption spectrum of $TEG_{12}PH_2$ (5.37 × 10⁻⁶ M) in methanol. d. UV-Vis absorption spectrum of serial dilutions of $TEG_{12}PH_2$ in methanol used to determine extinction coefficient (inset). e. UV-Vis absorption spectrum of $TEG_{12}PZn$ (4.11 × 10⁻⁶ M) in methanol. f. UV-Vis absorption spectrum of serial dilutions of $TEG_{12}PZn$ in methanol used to determine extinction coefficient (inset).

Figure S5. a. UV-Vis absorption spectrum of **TEG**₁₂**PH**₂ (black solid lines) and TPP (blue dashed line) in toluene with matched absorption intensity at 422.5 nm. b. ¹O₂ phosphorescence spectrum of **TEG**₁₂**PH**₂ (black solid lines) and TPP (blue dashed line) in toluene after excitation at 422.5 nm. c. UV-Vis absorption spectrum of **TEG**₁₂**PH**₂ (4.74 × 10⁻⁶ M) in toluene. d. UV-Vis absorption spectrum of **TEG**₁₂**PH**₂ in toluene used to determine extinction coefficient (inset). e. UV-Vis absorption spectrum of **TEG**₁₂**PZn** (3.36 × 10⁻⁶ M) in toluene. f. UV-Vis absorption spectrum of serial dilutions of **TEG**₁₂**PZn** in toluene used to determine extinction coefficient (inset).

Figure S6. a. UV-Vis absorption spectrum of **TEG₁₂PH₂** (black solid lines) and Ru(bpy)₃Cl₂ (blue dashed line) in water (D₂O) with matched absorption intensity at 423 nm. b. ¹O₂ phosphorescence spectrum of **TEG₁₂PH₂** (black solid lines) and Ru(bpy)₃Cl₂ (blue dashed line) in water (D₂O) after excitation at 423 nm. c. UV-Vis absorption spectrum of **TEG₁₂PH₂** (1.65 × 10^{-5} M) in water (H₂O). d. UV-Vis absorption spectrum of serial dilutions of **TEG₁₂PH₂** in water (H₂O) used to determine extinction coefficient (inset). e. UV-Vis absorption spectrum of **TEG₁₂PZn** (7.98 × 10^{-6} M) in water (H₂O). f. UV-Vis absorption spectrum of serial dilutions of **TEG₁₂PZn** in water (H₂O) used to determine extinction coefficient (inset).

 $Teg_{12}PH_2$ in Acetone – Concentration Effect

Figure S7. a. UV-Vis absorption spectrum of **TEG**₁₂**PH**₂ in acetone at various concentrations. b. ¹O₂ phosphorescence spectrum of **TEG**₁₂**PH**₂ in acetone at various concentrations after excitation at 414 nm. c. Comparison of intensity maxima of **TEG**₁₂**PH**₂ at various concentrations in acetone with the linear region inset. d. Excitation spectra (λ_{em} = 1270 nm) of **TEG**₁₂**PH**₂ at various concentrations in acetone with the Soret band (blue) and 1st Q-band (orange) regions highlighted.

Figure S8. a. UV-Vis absorption spectrum of $TEG_{12}PH_2$ in acetonitrile at various concentrations. b. ${}^{1}O_2$ phosphorescence spectrum of $TEG_{12}PH_2$ in acetonitrile at various concentrations after excitation at 414 nm. c. Comparison of intensity maxima of $TEG_{12}PH_2$ at various concentrations in acetonitrile with the linear region inset. d. Excitation spectra ($\lambda_{em} = 1270 \text{ nm}$) of $TEG_{12}PH_2$ at various concentrations in acetonitrile with the linear region inset. d. Excitation spectra ($\lambda_{em} = 1270 \text{ nm}$) of $TEG_{12}PH_2$ at various concentrations in acetonitrile with the Soret band (blue) and 1^{st} Q-band (orange) regions highlighted.

Teg₁₂PH₂ in Chloroform – Concentration Effect

Figure S9. a. UV-Vis absorption spectrum of **TEG**₁₂**PH**₂ in chloroform at various concentrations. b. ¹O₂ phosphorescence spectrum of **TEG**₁₂**PH**₂ in chloroform at various concentrations after excitation at 414 nm. c. Comparison of intensity maxima of **TEG**₁₂**PH**₂ at various concentrations in chloroform with the linear region inset. d. Excitation spectra ($\lambda_{em} = 1270$ nm) of **TEG**₁₂**PH**₂ at various concentrations in chloroform with the Soret band (blue) and 1st Q-band (orange) regions highlighted.

Teg₁₂PH₂ in Methanol – Concentration Effect

Figure S10. a. UV-Vis absorption spectrum of $TEG_{12}PH_2$ in methanol at various concentrations. b. ${}^{1}O_2$ phosphorescence spectrum of $TEG_{12}PH_2$ in methanol at various concentrations after excitation at 414 nm. c. Comparison of intensity maxima of $TEG_{12}PH_2$ at various concentrations in methanol with the linear region inset. d. Excitation spectra ($\lambda_{em} = 1270$ nm) of $TEG_{12}PH_2$ at various concentrations in methanol with the Soret band (blue) and 1^{st} Q-band (orange) regions highlighted.

 $Teg_{12}PH_2$ in Toluene – Concentration Effect

Figure S11. a. UV-Vis absorption spectrum of $TEG_{12}PH_2$ in toluene at various concentrations. b. ${}^{1}O_2$ phosphorescence spectrum of $TEG_{12}PH_2$ in toluene at various concentrations after excitation at 414 nm. c. Comparison of intensity maxima of $TEG_{12}PH_2$ at various concentrations in toluene with the linear region inset. d. Excitation spectra ($\lambda_{em} = 1270$ nm) of $TEG_{12}PH_2$ at various concentrations in toluene with the Soret band (blue) and 1^{st} Q-band (orange) regions highlighted.

Teg₁₂PH₂ in *d*-Water – Concentration Effect

Figure S12. a. UV-Vis absorption spectrum of **TEG**₁₂**PH**₂ in D₂O at various concentrations. b. ¹O₂ phosphorescence spectrum of **TEG**₁₂**PH**₂ in D₂O at various concentrations after excitation at 414 nm. c. Comparison of intensity maxima of **TEG**₁₂**PH**₂ at various concentrations in D₂O with the linear region inset. d. Excitation spectra ($\lambda_{em} = 1270 \text{ nm}$) of **TEG**₁₂**PH**₂ at various concentrations highlighted.

Figure S13. a. UV-Vis absorption spectrum of $TEG_{12}PH_2$ (1.30×10^{-6} M) in acetone with an argon, air or oxygen atmosphere. b. ${}^{1}O_2$ phosphorescence spectrum of $TEG_{12}PH_2$ (1.30×10^{-6} M) in acetone with atmosphere of air or oxygen after excitation at 414 nm. c. Fluorescence emission spectra of $TEG_{12}PH_2$ (1.30×10^{-6} M) in acetone with an argon, air or oxygen atmosphere excited at 420 nm. d. Fluorescence lifetime measurements (λ_{ex} = 402 nm, λ_{em} = 657 nm) of $TEG_{12}PH_2$ (1.30×10^{-6} M) in acetone with an atmosphere of argon, air or oxygen.

Teg₁₂PH₂ in Acetonitrile – Oxygen Effect

Figure S14. a. UV-Vis absorption spectrum of $\text{TEG}_{12}\text{PH}_2$ (1.30 × 10⁻⁶ M) in acetonitrile with an argon, air or oxygen atmosphere. b. ${}^{1}\text{O}_2$ phosphorescence spectrum of $\text{TEG}_{12}\text{PH}_2$ (1.30 × 10⁻⁶ M) in acetonitrile with atmosphere of air or oxygen after excitation at 424 nm. c. Fluorescence emission spectra of $\text{TEG}_{12}\text{PH}_2$ (1.30 × 10⁻⁶ M) in acetonitrile with an argon, air or oxygen atmosphere excited at 420 nm. d. Fluorescence lifetime measurements (λ_{ex} = 402 nm, λ_{em} = 657 nm) of $\text{TEG}_{12}\text{PH}_2$ (1.30 × 10⁻⁶ M) in acetonitrile with an atmosphere of argon, air or oxygen.

Teg₁₂PH₂ in Chloroform – Oxygen Effect

Figure S15. a. UV-Vis absorption spectrum of $TEG_{12}PH_2$ (1.30×10^{-6} M) in chloroform with an argon, air or oxygen atmosphere. b. ${}^{1}O_2$ phosphorescence spectrum of $TEG_{12}PH_2$ (1.30×10^{-6} M) in chloroform with atmosphere of air or oxygen after excitation at 421 nm. c. Fluorescence emission spectra of $TEG_{12}PH_2$ (1.30×10^{-6} M) in chloroform with an argon, air or oxygen atmosphere excited at 420 nm. d. Fluorescence lifetime measurements ($\lambda_{ex} = 402$ nm, $\lambda_{em} = 657$ nm) of $TEG_{12}PH_2$ (1.30×10^{-6} M) in chloroform with an atmosphere of argon, air or oxygen.

Teg₁₂PH₂ in Methanol – Oxygen Effect

Figure S16. a. UV-Vis absorption spectrum of $TEG_{12}PH_2$ (1.30×10^{-6} M) in methanol with an argon, air or oxygen atmosphere. b. ${}^{1}O_2$ phosphorescence spectrum of $TEG_{12}PH_2$ (1.30×10^{-6} M) in methanol with atmosphere of air or oxygen after excitation at 424 nm. c. Fluorescence emission spectra of $TEG_{12}PH_2$ (1.30×10^{-6} M) in methanol with an argon, air or oxygen atmosphere excited at 420 nm. d. Fluorescence lifetime measurements (λ_{ex} = 402 nm, λ_{em} = 657 nm) of $TEG_{12}PH_2$ (1.30×10^{-6} M) in methanol with an atmosphere of argon, air or oxygen.

Teg₁₂PH₂ in Toluene – Oxygen Effect

Figure S17. a. UV-Vis absorption spectrum of $TEG_{12}PH_2$ (1.30×10^{-6} M) in toluene with an argon, air or oxygen atmosphere. b. ${}^{1}O_2$ phosphorescence spectrum of $TEG_{12}PH_2$ (1.30×10^{-6} M) in toluene with atmosphere of air or oxygen after excitation at 422.5 nm. c. Fluorescence emission spectra of $TEG_{12}PH_2$ (1.30×10^{-6} M) in toluene with an argon, air or oxygen atmosphere excited at 420 nm. d. Fluorescence lifetime measurements (λ_{ex} = 402 nm, λ_{em} = 657 nm) of $TEG_{12}PH_2$ (1.30×10^{-6} M) in toluene with an atmosphere of argon, air or oxygen.

Figure S18. a. UV-Vis absorption spectrum of $TEG_{12}PH_2$ (1.30×10^{-6} M) in D₂O with an argon, air or oxygen atmosphere. b. ${}^{1}O_2$ phosphorescence spectrum of $TEG_{12}PH_2$ (1.30×10^{-6} M) in D₂O with atmosphere of air or oxygen after excitation at 423 nm. c. Fluorescence emission spectra of $TEG_{12}PH_2$ (1.30×10^{-6} M) in D₂O with an argon, air or oxygen atmosphere excited at 420 nm. d. Fluorescence lifetime measurements (λ_{ex} = 402 nm, λ_{em} = 657 nm) of $TEG_{12}PH_2$ (1.30×10^{-6} M) in D₂O with an argon, air or oxygen.

Figure S19. ¹H NMR spectrum of TEG₁₂PH₂

Figure S20. ¹³C NMR spectrum of TEG₁₂PH₂

Figure S21. FTIR-ATR spectrum of TEG₁₂PH₂.

Figure S22. Mass spectrum (ESI-TOF-HRMS) of TEG12PH2 (top) and a simulation (bottom)

Figure S23. ¹H NMR spectrum of TEG₁₂PZn

Figure S24. ¹³C NMR spectrum of TEG₁₂PZn

Figure S25. FTIR-ATR spectrum of TEG₁₂PZn,

Figure S26. Mass spectrum (ESI-HRMS) of TEG12PZn (top) and a simulation (bottom)