Supporting Information

Effect of separation of blocks on crystallization kinetics and phase composition of poly(butylene adipate) in multi-block thermoplastic polyurethanes

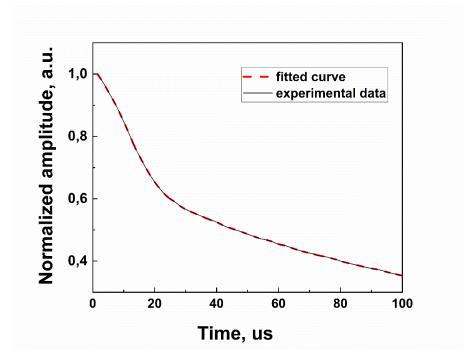
Marina A. Gorbunova,^{*ab}, Evgenii V. Komov,^b Leonid Yu. Grunin,^c Mariya S. Ivanova,^c Ainur F. Abukaev,^d Arina M. Imamutdinova,^b Dimitri A. Ivanov,^{abe} Denis V. Anokhin,^{** abc}

^{a.} Institute for Problems of Chemical Physics Russian Academy of Sciences, Semenov Prospect 1, 142432 Chernogolovka, Russia.

e. Institut de Sciences des Materriaux de Mulhouse, CNRS UMR 7361,15 Jean Starcky, F-68057 Mulhouse, France

Fig. S1 Pulse sequence diagram of the SE signal (A) and normalized SE decays of TPU-IPDI recorded in crystallization at 20°C after cooling from 150 °C (B).

The solid-state echo decay pulse train consists of a 90° at RT pulse in the x direction followed by a 90° pulse in the y direction after a delay time τ . Continuously increasing τ and registering the maximum of the echo signal by 2τ , at the top of which a conditional zero is established, the decay of the transverse magnetization is recorded.


^{*&}lt;u>zav@icp.ac.ru</u>

^{b.} Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.

^{**&}lt;u>deniano@yahoo.com</u>

^{c.} Volga State University of Technology, Lenin sq. 3, 424000, Yoshkar-Ola, Russia.

^{d.} Moscow Institute of Physics and Technology, Institutskiy per. 9, 141700 Dolgoprudny, Russia

Fig. S2 Experimental and fitted dependence of the Free Induction Decays (FID) of a two-step damping form Gaussian to exponential due to differences in the segmental mobility of the rigid and amorphous phases.

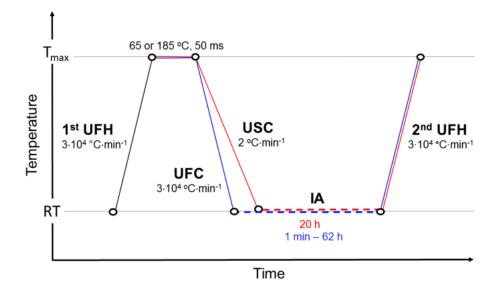


Fig. S3 Temperature programs for nanocalorimetric measurements: Program 1 (black line), Program 2 (red lines) and Program 3 (blue lines).

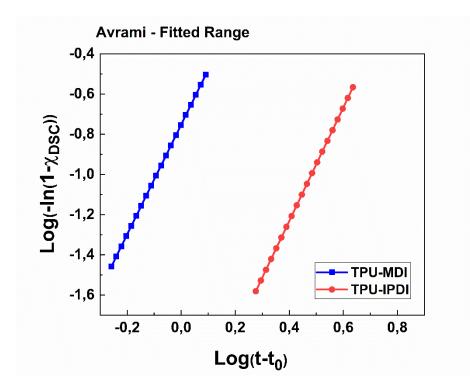


Fig. S4 Time dependence of χ_{DSC} in Avrami coordinates for TPU-MDI (blue curve) and TPU-IPDI (red curve).

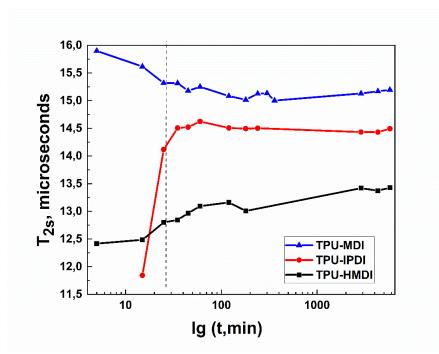


Fig. S5 Changes in the spin-spin relaxation time T_{2s} during crystallization at 20 °C after cooling from 150 °C.

Normally, the general trend in relaxation time of a rigid fraction with cooling and crystallizing should show the decrease of T₂₅. For the sample TPU-HMDI we observe definitely reversed behavior that can be explained by more intensive magnetization exchange between crystals and amorphous regions due to presence of in intermediate mesophase.

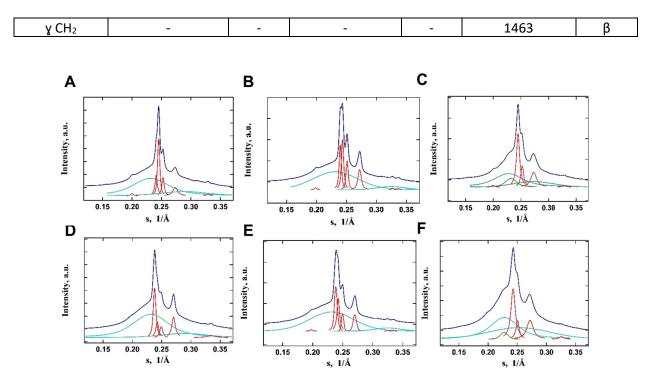

Main	Wavenumber,	Phase	Wavenumber,	Phase	Wavenumber,	Phase
assignment	cm⁻¹		cm⁻¹		cm⁻¹	
	20 °C/min		2 °C/min		storage at RT	
γ CH ₂	911	β	908	α	908	α
γ CH ₂	930	β	-	α	-	α
γ CH ₂	958	β	957	α	957	α
$\sigma_s CH_2$	1371	β	1368	α	1368	α
$\sigma_{as} CH_2$	1401	β	1398	α	1398	α
$\delta_s CH_2$	1416	β	1418	α	1418	α
$\delta_{as} CH_2$	1464	β	1461	α	1461	α
u _{as} C-O-C	1258	β	1257	α	1257	α
u _s C-O	1162	β	1160	α	1160	α

Table S1 Main frequencies and assignments of FTIR bands to crystal phases of PBA oligodiol.

Thus, it has been established that upon 20 °C/min cooling, the pure β -form crystallizes, while upon 2 °C/min cooling, the pure α -form crystallizes («fresh»). Storage («old») of PBA at RT leads to the formation of the α -phase.

Main	wavenumber,	phase	wavenumber,	phase	wavenumber,	phase			
assignment	cm⁻¹		cm⁻¹		cm⁻¹				
	TPU-MDI		TPU-IPDI		TPU-HMDI				
2 °C/min after 65 °C									
γ CH ₂	910	α+β	910	α+β	909	α+β			
γ CH ₂	930	α+β	930	-	930	α+β			
γCH ₂	959	β	960	β	959	β			
$\sigma_s CH_2$	1369	α+β	1369	α+β	1368	α			
$\sigma_{as}CH_2$	1397	α	1398	α	1396	α			
$\delta_s CH_2$	1415	α+β	1418	α	1417	α			
$\delta_{as}CH_2$	1462	α	1461	α	1463	α+β			
	20 °C/min after 150 °C								
γ CH₂	910	α+β	910	α+β	910	α+β			
γ CH ₂	930	α+β	930	α+β	930	-			
γ CH ₂	959	β	958	β	958	β			
$\sigma_s CH_2$	1369	α+β	1368	α	1368	α			
$\sigma_{as} CH_2$	1397	α	1398	α	1396	α			
$\delta_s CH_2$	1414	β	1418	α	1417	α			
$\delta_{as} CH_2$	1461	α+β	1461	α	1461	α			
	20 °C/min after 185 °C								
γCH_2	-	-	-	-	909	α+β			
γ CH ₂	-	-	-	-	930	α+β			
γ CH ₂	-	-	-	-	959	β			
$\sigma_s CH_2$	-	-	-	-	1369	α+β			
$\sigma_{as} CH_2$	-	-	-	-	1398	α+β			
$\delta_s CH_2$	-	-	-	-	1417	α			

Table S2 Main frequencies and assignments of FTIR bands to crystal phases of PBA in TPUs.

Fig. S6 Fitting with set of Gaussians of WAXS patterns of TPU-MDI (A, D), TPU-IPDI (B, E) and TPU-HMDI (C, F) after long storage (A-C) and after crystallization from 150 °C for 20 hours at RT (D, F). Red, cyan and green curves indicate crystalline, amorphous and mesophase peaks, respectively.

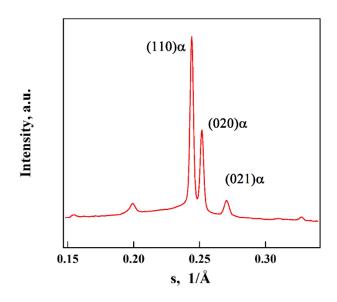
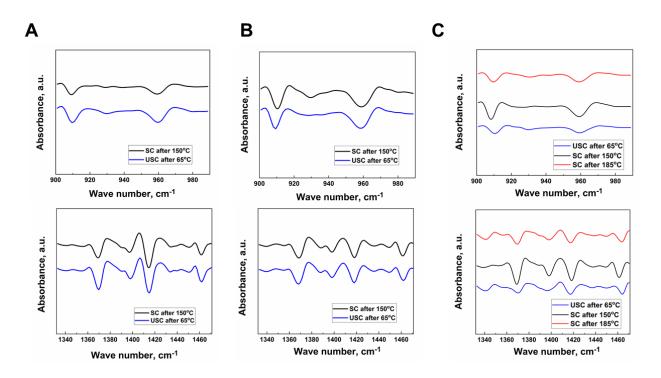
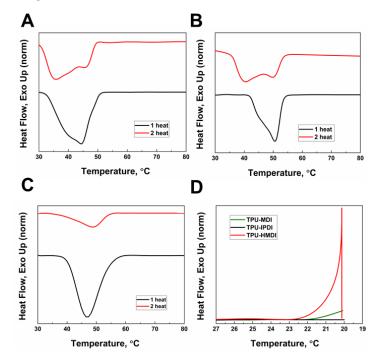



Fig. S7 WAXS diffractogram of PBA oligodiol (only α modification).

Fig. S8 Second derivatives of the IR spectra of the TPU series for TPU-MDI (A), TPU-IPDI (B) and TPU-HMDI (C), differing in the hard block structure and crystallized under different cooling conditions.

Table S3 Effect of crystallization conditions on the phase composition of PBA for different TPUs taken at the same time interval after crystallization

Sample preparation conditions	Cooling	Rate, °C/min	T _{max} heat, °C	FSC*	FTIR	WAXS			
PBA									
stored at RT		-	- α ^{**} α						
	UFC	30000	185	β	-	-			
recrystallized at RT	SC	20	65	-	β	-			
	USC	2	65	-	α	-			
	TPU-MDI								
stored at RT		α+β**	α+β	α+β					
	UFC	30000	185	α	-	-			
rear stallized at DT	USC	2	185	α+β	-	-			
recrystallized at RT	SC	20	150	-	α+β	α+β			
	USC	2	65	-	α+β	-			
TPU-IPDI									
stored at RT	-			α+β**	α+β	α+β			
	UFC	30000	185	α	-	-			
	USC	2	185	α+β	-	-			
recrystallized at RT	SC	20	150	-	α+β	α+β			
	USC	2	65	-	α+β	-			


TPU-HMDI								
stored at RT		α**	α	α				
recrystallized at RT	UFC	30000	185	α+β	-	-		
	SC	20	185	-	α+β	-		
	USC	2	185	α	-	-		
	SC	20	150	-	α	α		
	UFC	30000	65	α	-	-		
	USC	2	65	α	>α	-		

*UFH/UFC – ultra-fast heating/cooling with rate of 30 000 °C/min

 ** heating of the initial sample from RT to 185 °C

SC – slow cooling with rate of 20 °C/min

USC – ultra-slow cooling with rate of 2 °C/min

Fig. S9 DSC heating curves up to 150 °C of the initial films (1st heating, black curves) and after 30-min crystallization at 20 °C (2nd heating, red curves) for TPU-MDI (A), TPU-IPDI (B), TPU-HMDI (C) and 1st cooling curves (D).

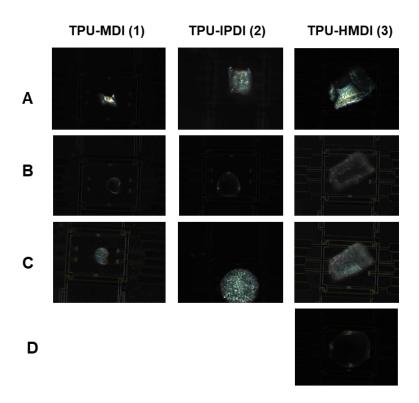


Fig. S10 Micrographs of TPU microparticles in polarized light.

For TPU-IPDI and TPU-MDI: particle linear sizes are about 75x75 and 40x30 microns, respectively. Before the 1^{st} heating (A); after the 1^{st} heating, at 185 °C (B); after 20 hour annealing at RT, right before the 2^{nd} heating (C). For TPU-HMDI: particle linear sizes are about 100x70 microns. Before the 1^{st} heating (A); after the 1^{st} heating, at 65 °C (B); after 20 hour annealing at RT, just before the 2^{nd} heating to 185 °C (C); just after the 2^{nd} heating, at 185 °C (D).