Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Multi-electron excitation contributions towards the primary and satellite states in the photoelectron spectrum. Supplementary Information

Torsha Moitra, Alexander C. Paul, Piero Decleva, Henrik Koch, and Sonia Coriani email: henrik.koch@sns.it, soco@kemi.dtu.dk

Scaling of the CC3 contributions

Table S1: Asymptotic scaling of the most important steps in the calculation of CC3 Dyson orbitals in floating point operations (FLOP) in terms of the number of occupied (n_o) and virtual (n_v) orbitals.

Parameters	Scaling [FLOP]
t_{μ}	$4n_{ m v}^4n_{ m o}^3$
λ_{μ}	$8 n_{ m v}^4 n_{ m o}^3$
L_{μ}	$8 n_{ m v}^4 n_{ m o}^3$
R_{μ}	$8n_{ m v}^4n_{ m o}^3$
γ_p^L	$6n_{\rm v}^4n_{\rm o}^3$
γ_p^R	$8n_{ m v}^4n_{ m o}^{ m 3}$

Parameters used in the LCAO B-spline TD-DFT calculations

Table S2: Parameters used in the LCAO B-spline code. L_{max} and l_{max} are the maximum angular momentum employed in the one center expansion at the origin and on each off-center atom, respectively. R_{max} and r_{max} (both in a.u.) are the maximum radial grid length from origin and from the off-center atoms, respectively. n_{step} is the number of radial grid points used.

Mologulo	n	Т	P	LCA	O descriptor
Molecule	$n_{\rm step}$	L_{\max}	$n_{\rm max}$	l_{\max}	$r_{ m max}$
H ₂ O	100	10	25.0	2(O)	1.000(H)
\mathbf{CS}	100	12	25.0	2(C,S)	0.400 (S), 0.600 (C)
H_2S	100	12	25.0	$1(\mathrm{H})$	0.600(H)
CS_2	100	20	25.0	2(S)	1.000(S)
C_3H_6O	100	12	25.0	2(C,O), 1(H)	0.600(O), 1.000(C,H)

Ground state electronic configuration

Molecule	Configuration
H_2O	$1a_1^22a_1^21b_2^23a_1^21b_1^2$
\mathbf{CS}	$1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^2 1\pi^4 5\sigma^2 6\sigma^2 7\sigma^2 2\pi^4$
H_2S	$1a_1^22a_1^21b_2^23a_1^21b_1^24a_1^22b_2^25a_1^22b_1^2\\$
CS_2	$1\sigma_u^2 1\sigma_g^2 2\sigma_g^2 2\sigma_u^2 3\sigma_g^2 3\sigma_u^2 4\sigma_g^2 1\pi_g^4 1\pi_u^4 5\sigma_g^2 4\sigma_u^2 6\sigma_g^2 5\sigma_u^2 2\pi_u^4 2\pi_g^4$

Table S3: Hartree-Fock ground-state electronic configurations.

Largest amplitudes and weight of single excitations for given ionizations

Table S4: CS: Dominant amplitudes and amount of single excitation contributions to the ionization bands. The ionization energies and intensities are reported in Table 2. Only configurations having amplitudes $R_i^{\mathfrak{b}}$ and $R_{ij}^{\mathfrak{b}b}$ greater than 0.3 and 0.4 for singles and doubles excitations, respectively, are listed.

Peak	EOM-0	CCSD		EOM	-CC3	
	Dominant config.	$\mid R_1/R \mid$	$\mid L_1/L \mid$	Dominant config.	$\mid R_1/R \mid$	$\mid L_1/L \mid$
${\rm X}~^2\Sigma$	$7\sigma^{-1}$	0.96	0.89	$7\sigma^{-1}$	0.94	0.87
A $^{2}\Pi$	$2\pi^{-1}$	0.98	0.95	$2\pi^{-1}$	0.97	0.94
B $^{2}\Sigma$	$6\sigma^{-1}$	0.90	0.85	$6\sigma^{-1}, 2\pi^{-1}(7\sigma^{-1}3\pi)$	0.67	0.63
C $^{2}\Sigma$	$6\sigma^{-1}, 2\pi^{-1}(7\sigma^{-1}3\pi)$	0.37	0.26	$6\sigma^{-1}, 2\pi^{-1}(7\sigma^{-1}3\pi)$	0.73	0.53

Table S5: H₂S: Dominant amplitudes and amount of single excitation contribution to the ionization bands obtained at EOM-CC3/aug-cc-pVTZ level, as reported in Table 3. Ionization energies are in eV. Only configurations having amplitudes R_i^b and R_{ij}^{bb} greater than 0.3 and 0.4 for singles and doubles excitations, respectively, are listed.

Peak	IE	Dominant config.	$\mid R_1/R \mid$	$\mid L_1/L \mid$
X^2B_1	10.38	$2b_1^{-1}$	0.98	0.95
A $^{2}A_{1}$	13.40	$5a_1^{-1}$	0.97	0.93
${\rm B}\ ^2B_2$	15.64	$2b_2^{-1}$	0.97	0.93
	19.35	$2b_1^{-2}5b_2, 2b_1^{-2}4b_2$	0.07	0.07
	20.29	$4a_1^{-1}, 2b_1^{-2}9a_1, 2b_1^{-2}8a_1, 2b_1^{-2}6a_1$	0.28	0.27
	22.27	$4a_1^{-1}, 2b_1^{-2}6a_1$	0.50	0.49
	22.62	$2b_1^{-1}(5a_1^{-1}8a_1), 2b_1^{-1}(5a_1^{-1}6a_1), 2a_1^{-1}(5a_1^{-1}9a_1)$	0.02	0.16
	23.26	$4a_1^{-1}, 2b_1^{-2}10a_1$	0.34	0.33
	23.72	$4a_1^{-1}, 2b_1^{-2}10a_1$	0.41	0.39

Peak	IE	Dominant config.	$\mid R_1/R \mid$	$\mid L_1/L \mid$
$X^2\Pi_g$	9.90	$2\pi_{q}^{-1}$	0.98	0.93
A $^{2}\Pi_{u}$	13.20	$2\pi_{u}^{-1}$	0.93	0.87
B $^{2}\Sigma_{u}$	14.45	$5\sigma_u^{-1}$	0.96	0.89
$^{2}\Pi_{u}$	17.78	$2\pi_a^{-2}3\pi_u$	0.14	0.09
$C^2 \Sigma_g$	16.42	$\check{6\sigma_q}^{-1}$	0.93	0.85
D $^{2}\Pi_{u}^{\circ}$	21.68	$2\pi_u^{-1}, 2\pi_g^{-2}3\pi_u$	0.32	0.16

Table S6: CS₂: Dominant amplitudes and amount of single excitation contribution towards ionization bands obtained at EOM-CCSD/aug-cc-pVDZ level of theory, as reported in Table 4. Ionization energies are in eV. Only configurations having amplitudes R_i^{b} and R_{ij}^{bb} greater than 0.3 and 0.4 for singles and doubles excitations, respectively, are listed.

Table S7: CS₂: Dominant amplitudes and amount of single excitation contribution towards ionization bands obtained at EOM-CC3/aug-cc-pVDZ level of theory, as reported in Table 4. Ionization energies are in eV. Only configurations having amplitudes $R_i^{\mathfrak{b}}$ and $R_{ij}^{\mathfrak{b}b}$ greater than 0.3 and 0.4 for singles and doubles excitation, respectively, are listed.

Peak	IE	Dominant config.	$\mid R_1/R \mid$	$ L_1/L $
${\rm X} {}^2\Pi_g$	9.84	$2\pi_{q}^{-1}$	0.97	0.91
A ${}^{2}\Pi_{u}$	12.74	$2\pi_u^{-1}, 2\pi_a^{-2}3\pi_u$	0.86	0.83
B $^{2}\Sigma_{u}$	14.20	$5\sigma_u^{-1}$	0.94	0.87
$^{2}\Pi_{u}$	14.74	$2\pi_a^{-2}3\pi_u$	0.23	0.13
$^{2}\Pi_{u}$	15.82	$2\pi_a^{-2}3\pi_u$	0.08	0.08
$C^2 \Sigma_g$	15.93	$\check{6}\sigma_{q}^{-1}$	0.86	0.81
D $^{2}\Pi_{u}^{\circ}$	17.60	$2\pi_u^{-1}, 2\pi_g^{-2}3\pi_u$	0.43	0.31

 H_2O

Figure S1: H₂O. (Combined) partial cross-section and (average) asymmetry parameter for the inner-valence $2a_1$ ionization channel, lumping together the two $2a_1^{-1}$ states at the CCSD level, and all CC3 states that contain a $2a_1^{-1}$ amplitude. Experimental results are taken from Ref. [1].

Figure S2: CS: Photoelelectron spectrum obtained using EOM-CCSD and EOM-CC3, aug-cc-pVTZ basis set. Experimental PES taken from Ref. [2]. Due to the use of pole strengths as measure of the intensity, the relative intensities are not accurately reproduced.[3]

Figure S3: CS: Partial cross section and asymmetry parameters computed using EOM-CC3/aug-cc-pVTZ Dyson.

$\mathbf{H}_{2}\mathbf{S}$

Table S8:	$H_2S: Com$	parison of ioniza	ation energies ((eV) between	Koopmans'	theorem	based 1	Hartree-Fock	molecular
orbital, E	COM-CCSD	and EOM-CC3.	Experimental	l ionization en	nergies are f	rom Ref.	[4].		

Band	Ioniz.	Major	HF/aVTZ	EOM-0	CCSD/aVTZ	EOM-C	CC3/aVTZ	EOM-C	CC3/aVDZ	Exp
		MO		IE	R_F	IE	R_F	IE	R_F	
Х	B_1	$2b_1$	10.48	10.42	0.9209	10.38	0.9051	10.18	0.9112	10.5
Α	A_1	$5a_1$	13.66	13.43	0.9128	13.40	0.8935	13.26	0.8981	13.4
В	B_2	$2b_2$	16.05	15.69	0.9141	15.64	0.8927	15.57	0.8983	15.6
	B_2	$2b_2$		21.98	0.0019	19.35	0.0047	19.32	0.0041	18*
	A_1	$4a_1$		22.41	0.4130	20.29	0.0709	20.10	0.0570	20 (19.6)
	A_1	$4a_1$	26.75	24.35	0.2617	22.27	0.2268	22.17	0.2647	22.1
	B_1	$2b_1$				22.62	0.0007	22.39	0.0009	22.7
	B_1	$2b_1$						23.34	0.0010	
Sat	A_1	$4a_1$		26.26	0.0232	23.26	0.1026	23.48	0.1654	23.05
	A_1	$4a_1$				23.72	0.1576	23.87	0.0636	23.31
	A_1	$4a_1$						24.39	0.0111	
	B_1	$2b_1$						24.39	0.0077	

Figure S4: H₂S: Highest occupied molecular orbitals plotted at isovalues of 0.1. The orbital energies are -16.05 eV, -13.66 eV and -10.49 eV, respectively.

Figure S5: H₂S: Photoelelectron spectrum above 17 eV, obtained using EOM-CCSD and EOM-CC3, aug-cc-pVTZ basis set. Experimental PES taken from Ref. [4], with $h\nu = 90$ eV. The peak at 18 eV in experiment is attributed to OCS impurity.

Figure S6: H_2S : Individual channel asymmetry parameter computed using EOM-CC3/aug-cc-pVTZ Dyson orbital and TD-DFT continuum. Experimental results taken from Ref. [4].

 \mathbf{CS}_2

Table S9: CS₂. Comparison of ionization energies (IE, eV) and spectral strengths (R_F . Experimental results are taken from Ref. [5].

Peak	EOM-0	CCSD/aVTZ	EOM-C	EOM-CC3/aVTZ		EOM-CCSD/aVDZ		EOM-CC3/aVDZ	
	IE	R_F	IE	R_F	IE	R_F	IE	R_F	IE
$X^2\Pi_g$	10.06	0.8955	9.99	0.8556	9.90	0.8970	9.84	0.8630	10.1
A $^{2}\Pi_{u}$	13.34	0.8315	12.84	0.7015	13.20	0.8250	12.74	0.6993	12.9
B $^{2}\Sigma_{u}$	14.61	0.8735	14.34	0.8189	14.45	0.8734	14.20	0.8240	14.6
(a) $^{2}\Pi_{u}$			14.82	0.0238			14.74	0.0290	-
(b) $^{2}\Pi_{u}$			15.88	0.0058			15.82	0.0056	-
$C^{2}\Sigma_{g}$	16.63	0.8179	16.09	0.6738	16.42	0.8140	15.93	0.6798	16.2
$D^2\Pi_u$	18.24	0.0114	17.71	0.1460	17.78	0.0136	17.60	0.1480	17.2
$ \begin{array}{c} X \ ^2\Pi_g \\ A \ ^2\Pi_u \\ B \ ^2\Sigma_u \\ (a) \ ^2\Pi_u \\ (b) \ ^2\Pi_u \\ C \ ^2\Sigma_g \\ D \ ^2\Pi_u \end{array} $	$ \begin{array}{c} 10.06\\ 13.34\\ 14.61\\ 16.63\\ 18.24\\ \end{array} $	$\begin{array}{c} 0.8955\\ 0.8315\\ 0.8735\\ \end{array}$	$\begin{array}{c} 9.99 \\ 12.84 \\ 14.34 \\ 14.82 \\ 15.88 \\ 16.09 \\ 17.71 \end{array}$	$\begin{array}{c} 0.8556 \\ 0.7015 \\ 0.8189 \\ 0.0238 \\ 0.0058 \\ 0.6738 \\ 0.1460 \end{array}$	9.90 13.20 14.45 16.42 17.78	$\begin{array}{c} 0.8970 \\ 0.8250 \\ 0.8734 \\ 0.8140 \\ 0.0136 \end{array}$	$\begin{array}{r} 9.84 \\ 12.74 \\ 14.20 \\ 14.74 \\ 15.82 \\ 15.93 \\ 17.60 \end{array}$	$\begin{array}{c} 0.8630 \\ 0.6993 \\ 0.8240 \\ 0.0290 \\ 0.0056 \\ 0.6798 \\ 0.1480 \end{array}$	$ \begin{array}{r} 10.1 \\ 12.9 \\ 14.6 \\ - \\ 16.2 \\ 17.2 \\ \end{array} $

Figure S7: CS₂: Photoelelectron spectrum obtained using EOM-CCSD/aug-cc-pVDZ and EOM-CC3/aug-cc-pVDZ. Experimental PES taken from Ref. [5].

Figure S8: CS_2 . Partial cross sections and asymmetry parameters of the ionization channels in Table S9. Experimental results (colored dots) are from Ref. [6], [5], [7]. The EOM-CC3/aug-cc-pVTZ Dyson orbitals are used for the bound state description, and DFT and TDDFT for the continuum.

Figure S9: CS_2 . Partial cross sections and asymmetry parameters, CCSD (red line) versus CC3 (green line) Dyson description of bound state. B-spline TDDFT is used for the continuum part. Experimental results (colored dots) are from Refs. [6, 5, 7]. For the D band, the 17.78 eV and 17.60 eV EOM-CCSD and EOM-CC3 Dyson orbital coefficients were used, respectively.

Figure S10: CS_2 . Partial cross-section and asymmetry parameter for satellite ionization channels. Experimental results are taken from Ref. [5].

Methyloxirane

EOM-CCS	D/aug-cc-pVTZ	EOM-CC3	/aug-cc-pVTZ	Exp
IE (eV)	R_F	IE (eV)	R_F	IE (eV)
10.37	0.8924	10.39	0.8438	10.44
11.21	0.9052	11.20	0.8743	11.32
13.23	0.9070	13.18	0.8808	13.04
13.43	0.9055	13.36	0.8716	13.57
14.40	0.9077	14.33	0.8764	14.46
15.12	0.9067	15.03	0.8741	15.12
16.13	0.8934	16.00	0.8462	16.18
17.41	0.8874	17.21	0.8266	17.22
20.06	0.8686			19.65

Table S10: Methyloxirane: Computed ionization energies and intensities.

Figure S11: (S)-Methyl-oxirane: Right CC3 Dyson orbitals of the six lowest ionized states plotted at an isovalue of 0.1

Figure S12: (S)-Methyl-oxirane: Photoelectron circular dichroic parameter using CCSD and CC3 Dyson orbitals with TDDFT continuum (first two rows), and CC3 Dyson orbitals with DFT and TDDFT continuum (third and fourth row).

Geometries

\mathbf{H}_2	O (Å)			
О	0.0000000	0.00	000000	0.11730000
Н	-0.75720000	0.00	000000	-0.46920000
Н	0.75720000	0.00	000000	-0.46920000
\mathbf{CS}	(Å)			
S	0.00000000	0.000	00000	0.41860909
C		0.000	00000	-1.11629091
\mathbf{H}_2	S (Å):			
S	0.0000 0	.0000	0.0000	
H	-0.9616 0	.0000	-0.9269	
H	0.9616 0	.0000	-0.9269	
\mathbf{CS}	$_2$ (bohr):			
C	0.000000	0.0000	0.000	000
S	0.000000	0.0000	2.934	000
S	0.000000	0.0000	-2.933	553
\mathbf{C}_3	$\mathbf{H}_{6}\mathbf{O}$ (bohr)			
C	-0.28956361	0.0	8176958	0.92701577
C	1.93885200	-1.1	5600766	-0.10800484
C	-2.79852375	-0.1	9094696	-0.27656907
O	1.53613696	1.4	7730615	-0.46998636
H	1.71860882	-2.3	2670888	-1.80795335
H	3.52273536	-1.6	4526642	1.13875511
H	-0.27744501		0560530	2.96417187
H	-2.56905279	-0.5	9002862	-2.30639911
H	-3.89960425	1.5	6511541	-0.07933409
Н	-3.88892566	-1.7	3605572	0.59599929

References

- M. S. Banna, B. H. McQuaide, R. Malutzki, and V. Schmidt. The photoelectron spectrum of water in the 30 to 140 ev photon energy range. J. Chem. Phys., 84(9):4739–4744, 1986.
- [2] Neville Jonathan, A. Morris, M. Okuda, K. J. Ross, and D. J. Smith. Photoelectron spectroscopy of transient species. The CS molecule. *Faraday Discuss. Chem. Soc.*, 54:48–55, 1972.
- [3] Aurora Ponzi, Celestino Angeli, Renzo Cimiraglia, Sonia Coriani, and Piero Decleva. Dynamical photoionization observables of the CS molecule: The role of electron correlation. J. Chem. Phys., 140(20):204304, 2014.
- [4] P. Baltzer, L. Karlsson, M. Lundqvist, B. Wannberg, D. M. P. Holland, and M. A. MacDonald. An experimental study of the valence shell photoelectron spectrum of hydrogen sulphide. *Chem. Phys.*, 195(1):403–422, 1995.
- [5] Thomas A. Carlson, Manfred O. Krause, and Frederick A. Grimm. Angle resolved photoelectron spectroscopy of CS₂ and COS measured as a function of photon energy from 21 to 70 eV. J. Chem. Phys., 77(4):1701–1709, 1982.
- [6] Thomas A. Carlson, Manfred O. Krause, Frederick A. Grimm, John D. Allen, David Mehaffy, Paul R. Keller, and James W. Taylor. Angle-resolved photoelectron spectroscopy of CS₂ and COS measured with synchrotron radiation. J. Chem. Phys., 75(7):3288–3292, 1981.
- [7] F. Carnovale, M. G. White, and C. E. Brion. Absolute dipole oscillator strengths for photoabsorption and photoionization of carbon disulphide. J. Elec. Spectr. Rel. Phen., 24(1):63-76, 1981.