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1. Derivation of V' = V(m, n, )

Fig. S1. Fractal models of the first generation; (m, n, [) = (1, 4, 2) (a), (1, 5, 2) (b), (1, 5,
3)(c), and (1, 6, 2) (d).
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Fig. S2. Side views of the fractal models of the first generation in Fig. S1; (m, n, [) = (1,
4,2) (a), (1, 5,2) (b), (1,5, 3) (), and (1, 6, 2) (d).
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Fig. S3. Removed (lower figures) and residual (upper figures) parts of the fractal models
of the first generation; (m, n, [) = (1, 3, 1) (a), (1, 4, 1) (b), (1, 5, 1) (¢), and (1, 6, 1) (d).

At first, a cube with a unit length of edge is divided by »n® cubes of equal volumes,
producing small cubes with an edge of n-!. Then we remove some of the small cubes to
leave square holes with an edge of / in the orthogonal three directions (Figs. S1 and S2;
1<I<n-2).

The volume to be removed from the original (intact) cube for the first generation fractal
models, V;, is calculated from the volume of the square pillar with considering the
duplicated central part (Fig. S3).

1 *(3n-21
Vr=—x(3anlz—Zl3)=u (Eq.S1)
3 3
n n
Then, the residual volume, i.e., V(1, n, /) is obtained by subtracting V; from the original
volume (=1).
F@3n-20) 1
vL,nl)=1- FGn-2h _ —{n®-1*(3n-2D) (Eq.S2)
n? n3
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Fig. S4. Relationship between fractal models with different generations; the first
generation; (m, n, [) = (1, 4, 2) (@) and the second generation; (m, n, [) = (2, 4, 2) (b).

The volume of the second generation V' = V(2, n, /) is calculated from that of the first
generation V'=V(1, n, [) (Fig. S4(a)). Every smallest cube in the first generation is divided
into n3 cubes of equal dimension. Then we remove some cubes to leave holes in the exact
same way with what we did in the first generation (Fig. S4(b)). Therefore, the volume
V(2, n, [) is described by (Eq. S3).

1 1
v nl) = W{rﬁ - 3n-20)}x {n* - *(3n-2D)} = W{rﬁ - *(3n-2D)?

(Eq. S3)
If we repeat a similar procedure for the fractal model of the second generation, we

obtain the volume of the third generation V(3, n, [).

1 1
V33, nl) = 7)3{713 -P@Bn-20) x {n®-1*(3n-2D)} = W{rﬁ -*3n-2D)

(Eq. S4)
Similarly, the volume of the m-th generation V= V(m, n, /) is described by (Eq. S5).

(n® - P3n- 20"
V(mnl) = (m=012,.;1<1<n-2) (Eq.S5)

(n™)’




2. Derivation of S = S(m, n, [)

Firstly, we derive the surface area of the first generation. The side product of a given
fractal model (Fig. S2) is

1 2 2
?x (n“-1%)  (Eq.S6)

As every fractal model has six sides, the surface area of all the sides S(sides) of the

first generation is

6
S(sides;m=1) = — X (n* - 1) (Eq.S7)
n

Next we consider the inner surface area S(inner) of the first generation fractal models.
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Fig. S5. Inside views of the fractal models of the first generation; (m, n, /) = (1, 4, 2) (a),
(1,5,2) (b), (1,5, 3) (c), and (1, 6, 2) (d).
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Fig. S6. Projection views of the fractal models of the first generation shown in Fig. S6;
(m,n,0)=(1,4,2)(a), (1,5,2)(b), (1, 5,3)(c),and (1, 6, 2) (d). The red parts designate




the increased surface area by producing the void spaces.
The void space in the first generation fractal model consists of orthogonally
interpenetrating square pillars as shown in Fig. S3. The side product of a square pillar is
1
—XIx (-1 (Eq. S8)
2
n
As the void space consists of three pillars with four sides each, S(inner; m = 1) is
described as
. 1 12
S(inmerrm=1)=4x3x—=xIxn-D)=—Iln-10) (Eq.59)
n’ n?
Thus the total surface area of the first generation S(1, n, /) is calculated as the sum of
S(sides; m = 1) and S(inner; m = 1).

6 12
S(1,n, ) = —z(n2 -5+ —ln-1 (Eq.510)
n n

The second generation surface area S(2, n, /) is calculated similarly to (Eq. S10). The
second generation fractal model consists of the smaller cubes with an edge length of n-2
(Fig. S7). As a side of the second generation fractal model contains the following
number (Eq. S11) of the side of the first generation model,

(n2 - lz) X (n2 - 12):(n2 - lz)2 (Eq.S11)
the side product of a given fractal model of the second generation is
1

(n)’

As every fractal model has six sides, the surface area of all the sides S(sides) of the

(n*-1%)? (Eq.512)

second generation is

S(sides;m =2) = (n? - 1%)? (Eq.S12)

(n%)*
The number of the smaller holes in the second generation is
n3-3n+2 (Eq. $8)
Every smallest hole has four sides and extends in three directions. Thus the surface

area of the smaller holes S(smaller holes) is

S(smaller holes) = xl(n-D{n®-1*(Bn-2D} (Eq.513)

n2)2
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Fig. S7. Fractal model of the second generation; (m, n, ) = (2, 4, 2). The red parts

designate a basal plane of the largest void space.

Then we consider the larger holes. The red area in Fig. S7 consists of two (more
generally, /) sides of the first generation model. Each side area of the smaller square is
(n?)2, and there are (n*-1?) of smaller squares in a side of the first generation model.
Thus the red area in Fig. S7 is described by (Eq. S14).

1
(n%)*

Therefore, by similar discussion to derive (Eq. S13), the surface area of the larger

I(n*-1%) (Eq.S514)

holes S(larger holes) is
12

z)zl(n -D(n*-1%) (Eq. S15)

S(larger holes) =
(n

Thus the surface area of the second generation S(2, n, /) is described by the sum of (Eq.
S12), (Eq. S13), and (Eq. S15).
12 12
S2,n ) =——n*-1")*+—=Iln-Dn*-*Gn-2D} + —I(n-D(n*- 1%
(n2)2 Tl2 2 (nZ)Z
(Eq. S16)

Similarly, for the m-th generation,

(n*- 1" I(n-1) 2 2\k-1..3 12 —k
+12 Z(n - )k Yn® ~ 2(3n - 20"
(n™)? (™ &4

(m=012,..;1<1<n-2) (Eq.S517)

S(mn) =6



3. The fitting analysis of critical current density performed in our previous workS!

The trial function for the observed Ds-dependence of J-(H) is

H H
JcH)=]co+ Alexp( - T—) + Azexp( - T—) (Eq.S518)
1 2

where H, Jc, Ai, and 7; (1 = 1,2) indicate the magnetic field strength [G], offset values of
Jc [A cm?], amplitudes [A cm], and relaxation constant [G-!], respectively.

Among the parameters of Jc o, 4;, and 7, only 7 (1= 1,2) has a physical meaning intrinsic
to the sample and independent of the experimental conditions. The value of J¢ originates
from residual magnetization and depends on the amount and distribution of defects in
samples and the experimental conditions such as magnetic fields. The absolute values of
A; depend on the system sizes (the volumes of the AKD and YBCO parts). The relative
values of 4;, i.e., A1/A4, or Ay/A;, have a physical meaning intrinsic to the fractal dimension
Dy. The relative values of 4; describe the ratio of the number of the flux lines penetrating
the AKD parts to those penetrating the YBCO parts. Because AKD (a diamagnetic
insulator) and YBCO should have clearly different strengths of pinning magnetic flux
lines and thus clearly different values of 7, the curve-fitting analysis above can
distinguish one from the other. Estimated errors in 77!, 4;, and D are approximately +2.5
%, £2.5 %, and £0.05, respectively.
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