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1. Derivation of V = V(m, n, l)

Fig. S1. Fractal models of the first generation; (m, n, l) = (1, 4, 2) (a), (1, 5, 2) (b), (1, 5, 
3) (c), and (1, 6, 2) (d).

Fig. S2. Side views of the fractal models of the first generation in Fig. S1; (m, n, l) = (1, 
4, 2) (a), (1, 5, 2) (b), (1, 5, 3) (c), and (1, 6, 2) (d).
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Fig. S3. Removed (lower figures) and residual (upper figures) parts of the fractal models 
of the first generation; (m, n, l) = (1, 3, 1) (a), (1, 4, 1) (b), (1, 5, 1) (c), and (1, 6, 1) (d).

At first, a cube with a unit length of edge is divided by n3 cubes of equal volumes, 
producing small cubes with an edge of n-1. Then we remove some of the small cubes to 
leave square holes with an edge of l in the orthogonal three directions (Figs. S1 and S2; 
1  l  n – 2).
The volume to be removed from the original (intact) cube for the first generation fractal 

models, Vr, is calculated from the volume of the square pillar with considering the 
duplicated central part (Fig. S3).

𝑉𝑟 =
1

𝑛3
× (3 × 𝑛 × 𝑙2 ‒ 2𝑙3) =

𝑙2(3𝑛 ‒ 2𝑙)

𝑛3
                      (𝐸𝑞. 𝑆1)

Then, the residual volume, i.e., V(1, n, l) is obtained by subtracting Vr from the original 
volume (=1).

𝑉(1, 𝑛, 𝑙) = 1 ‒
𝑙2(3𝑛 ‒ 2𝑙)

𝑛3
=

1

𝑛3{𝑛3 ‒ 𝑙2(3𝑛 ‒ 2𝑙)}           (𝐸𝑞. 𝑆2)
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Fig. S4. Relationship between fractal models with different generations; the first 
generation; (m, n, l) = (1, 4, 2) (a) and the second generation; (m, n, l) = (2, 4, 2) (b).

The volume of the second generation V = V(2, n, l) is calculated from that of the first 
generation V = V(1, n, l) (Fig. S4(a)). Every smallest cube in the first generation is divided 
into n3 cubes of equal dimension. Then we remove some cubes to leave holes in the exact 
same way with what we did in the first generation (Fig. S4(b)). Therefore, the volume 
V(2, n, l) is described by (Eq. S3).

𝑉(2, 𝑛, 𝑙) =  
1

(𝑛2)3{𝑛3 ‒ 𝑙2(3𝑛 ‒ 2𝑙)} × {𝑛3 ‒ 𝑙2(3𝑛 ‒ 2𝑙)} =
1

(𝑛2)3{𝑛3 ‒ 𝑙2(3𝑛 ‒ 2𝑙)}2

(Eq. S3)

If we repeat a similar procedure for the fractal model of the second generation, we 
obtain the volume of the third generation V(3, n, l).

𝑉(3, 𝑛, 𝑙) =  
1

(𝑛3)3{𝑛3 ‒ 𝑙2(3𝑛 ‒ 2𝑙)}2 × {𝑛3 ‒ 𝑙2(3𝑛 ‒ 2𝑙)} =
1

(𝑛3)3{𝑛3 ‒ 𝑙2(3𝑛 ‒ 2𝑙)}3

(Eq. S4)

Similarly, the volume of the m-th generation V = V(m, n, l) is described by (Eq. S5).

𝑉(𝑚,𝑛,𝑙) =
{𝑛3 ‒ 𝑙2(3𝑛 ‒ 2𝑙)}𝑚

(𝑛𝑚)3
 (𝑚 = 0,1,2,…; 1 ≤ 𝑙 ≤ 𝑛 ‒ 2)       (𝐸𝑞. 𝑆5)



5

2. Derivation of S = S(m, n, l)

Firstly, we derive the surface area of the first generation. The side product of a given 
fractal model (Fig. S2) is
1

𝑛2
× (𝑛2 ‒ 𝑙2)        (𝐸𝑞. 𝑆6)

As every fractal model has six sides, the surface area of all the sides S(sides) of the 
first generation is

𝑆(𝑠𝑖𝑑𝑒𝑠;𝑚 = 1) =
6

𝑛2
× (𝑛2 ‒ 𝑙2)            (𝐸𝑞. 𝑆7)

Next we consider the inner surface area S(inner) of the first generation fractal models.

Fig. S5. Inside views of the fractal models of the first generation; (m, n, l) = (1, 4, 2) (a), 
(1, 5, 2) (b), (1, 5, 3) (c), and (1, 6, 2) (d).

Fig. S6. Projection views of the fractal models of the first generation shown in Fig. S6; 
(m, n, l) = (1, 4, 2) (a), (1, 5, 2) (b), (1, 5, 3) (c), and (1, 6, 2) (d). The red parts designate 
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the increased surface area by producing the void spaces.
The void space in the first generation fractal model consists of orthogonally 
interpenetrating square pillars as shown in Fig. S3. The side product of a square pillar is
1

𝑛2
× 𝑙 × (𝑛 ‒ 𝑙)         (𝐸𝑞. 𝑆8)

As the void space consists of three pillars with four sides each, S(inner; m = 1) is 
described as

𝑆(𝑖𝑛𝑛𝑒𝑟;𝑚 = 1) = 4 × 3 ×
1

𝑛2
× 𝑙 × (𝑛 ‒ 𝑙) =

12

𝑛2
𝑙(𝑛 ‒ 𝑙)     (𝐸𝑞. 𝑆9)

Thus the total surface area of the first generation S(1, n, l) is calculated as the sum of 
S(sides; m = 1) and S(inner; m = 1).

𝑆(1, 𝑛, 𝑙) =
6

𝑛2(𝑛2 ‒ 𝑙2) +
12

𝑛2
𝑙(𝑛 ‒ 𝑙)     (𝐸𝑞. 𝑆10)

The second generation surface area S(2, n, l) is calculated similarly to (Eq. S10). The 
second generation fractal model consists of the smaller cubes with an edge length of n-2 
(Fig. S7). As a side of the second generation fractal model contains the following 
number (Eq. S11) of the side of the first generation model,
(𝑛2 ‒ 𝑙2) × (𝑛2 ‒ 𝑙2)＝(𝑛2 ‒ 𝑙2)2      (𝐸𝑞. 𝑆11)

the side product of a given fractal model of the second generation is
1

(𝑛2)2(𝑛2 ‒ 𝑙2)2       (𝐸𝑞. 𝑆12)

As every fractal model has six sides, the surface area of all the sides S(sides) of the 
second generation is

𝑆(𝑠𝑖𝑑𝑒𝑠;𝑚 = 2) =
6

(𝑛2)2(𝑛2 ‒ 𝑙2)2            (𝐸𝑞. 𝑆12)

The number of the smaller holes in the second generation is
𝑛3 ‒ 3𝑛 + 2          (𝐸𝑞. 𝑆8)
Every smallest hole has four sides and extends in three directions. Thus the surface 

area of the smaller holes S(smaller holes) is

𝑆(𝑠𝑚𝑎𝑙𝑙𝑒𝑟 ℎ𝑜𝑙𝑒𝑠) =
12

(𝑛2)2
× 𝑙(𝑛 ‒ 𝑙){𝑛3 ‒ 𝑙2(3𝑛 ‒ 2𝑙)}      (𝐸𝑞. 𝑆13)
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Fig. S7. Fractal model of the second generation; (m, n, l) = (2, 4, 2). The red parts 
designate a basal plane of the largest void space.

Then we consider the larger holes. The red area in Fig. S7 consists of two (more 
generally, l) sides of the first generation model. Each side area of the smaller square is 
(n-2)-2, and there are (n2-l2) of smaller squares in a side of the first generation model. 
Thus the red area in Fig. S7 is described by (Eq. S14).

1

(𝑛2)2
𝑙(𝑛2 ‒ 𝑙2)       (𝐸𝑞. 𝑆14)

Therefore, by similar discussion to derive (Eq. S13), the surface area of the larger 
holes S(larger holes) is

𝑆(𝑙𝑎𝑟𝑔𝑒𝑟 ℎ𝑜𝑙𝑒𝑠) =
12

(𝑛2)2
𝑙(𝑛 ‒ 𝑙)(𝑛2 ‒ 𝑙2)           (𝐸𝑞. 𝑆15)

Thus the surface area of the second generation S(2, n, l) is described by the sum of (Eq. 
S12), (Eq. S13), and (Eq. S15).

𝑆(2, 𝑛, 𝑙) =
6

(𝑛2)2(𝑛2 ‒ 𝑙2)2 +
12

(𝑛2)2
𝑙(𝑛 ‒ 𝑙){𝑛3 ‒ 𝑙2(3𝑛 ‒ 2𝑙)} +

12

(𝑛2)2
𝑙(𝑛 ‒ 𝑙)(𝑛2 ‒ 𝑙2)

(Eq. S16)

Similarly, for the m-th generation,

𝑆(𝑚,𝑛,𝑙) = 6
(𝑛2 ‒ 𝑙2)𝑚

(𝑛𝑚)2
+ 12

𝑙(𝑛 ‒ 𝑙)

(𝑛𝑚)2

𝑚

∑
𝑘 = 1

(𝑛2 ‒ 𝑙2)𝑘 ‒ 1{𝑛3 ‒ 𝑙2(3𝑛 ‒ 2𝑙)}𝑚 ‒ 𝑘 

(𝑚 = 0,1,2,…; 1 ≤ 𝑙 ≤ 𝑛 ‒ 2)                     (𝐸𝑞. 𝑆17)
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3. The fitting analysis of critical current density performed in our previous workS1

The trial function for the observed Df-dependence of JC(H) is

𝐽𝐶(𝐻) = 𝐽𝐶,0 + 𝐴1𝑒𝑥𝑝( ‒
𝐻
𝜏1

) + 𝐴2𝑒𝑥𝑝( ‒
𝐻
𝜏2

)                  (𝐸𝑞. 𝑆18)

where H, JC,0, Ai, and i (i = 1,2) indicate the magnetic field strength [G], offset values of 
JC [A cm-2], amplitudes [A cm-2], and relaxation constant [G-1], respectively.
Among the parameters of JC,0, Ai, and i, only i (i = 1,2) has a physical meaning intrinsic 

to the sample and independent of the experimental conditions. The value of JC,0 originates 
from residual magnetization and depends on the amount and distribution of defects in 
samples and the experimental conditions such as magnetic fields. The absolute values of 
Ai depend on the system sizes (the volumes of the AKD and YBCO parts). The relative 
values of Ai, i.e., A1/A2 or A2/A1, have a physical meaning intrinsic to the fractal dimension 
Df. The relative values of Ai describe the ratio of the number of the flux lines penetrating 
the AKD parts to those penetrating the YBCO parts. Because AKD (a diamagnetic 
insulator) and YBCO should have clearly different strengths of pinning magnetic flux 
lines and thus clearly different values of i, the curve-fitting analysis above can 
distinguish one from the other. Estimated errors in i

-1, Ai, and D are approximately ±2.5 
%, ±2.5 %, and ±0.05, respectively.
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