Stabilization and fluorescence light-up of G-quadruplex nucleic acids using indolyl-quinolinium based probes

Annyesha Biswas, Sushma B. Singh, Chaitra S. Todankar, Sruthi Sudhakar, Sushree Prangya Priyadarshinee Pany, P.I. Pradeepkumar*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India Email: pradeep@chem.iitb.ac.in

TABLE OF CONTENTS

Figure S1	CD titration spectra of <i>c-MYC</i> DNA in the absence of added metal	Daga S2
Figure S2	CD titration spectra of c -MYC G4 DNA in the presence of K ⁺ ions	Page S3 Page S4
Figure S3	CD titration spectra of c-KIT 1 DNA in the absence of added metal	
Figuro \$4	ions	Page S5
Figure 54	ions	Page S6
Figure S5	CD titration spectra of telomeric DNA in the absence of added metal	
	ions	Page S7
Figure S6	CD titration spectra of telomeric G4 DNA in the presence of K^+	Page S8
Figure S7	CD titration spectra of h_{RAS} / DNA in the absence of added metal	
I Igule 57	ions	Page S9
Figure S8	CD titration spectra of <i>h</i> -RAS l G4 DNA in the presence of K ⁺	U
	ions.	Page S10
Figure S9	CD melting curves of <i>c-MYC</i> , <i>h-RAS I</i> and duplex DNAs with	Daga S11
Figure S10	Absorption and emission spectra of ligand 2 in different	Fage STI
8	solvents	Page S12
Figure S11	Absorption and emission spectra of ligand 3 in different	
E' 010	solvents	Page S12
Figure S12	Fluorimetric titration curves of ligand \mathbf{I} with telometric G4 and duplex	Page S13
Figure S13	Binding curves of ligand 1 with telomeric G4 and duplex	Page S13
8	DNAs.	U
Figure S14	Fluorimetric titration curves of ligand 2 with different DNAs	Page S14
Figure S15	Binding curves of ligand 2 with different DNAs	Page S16
Figure S16	Fluorimetric titration curves of ligand 3 with different DNAs	Page S17
Figure S17	TCSPC plots of ligands with different DNAs	Page S18
Figure S18	Plot of percentage cell viabilities of ligand 1	Page S19

Figure S19	Fluorescence of ligand 1 in cells treated with DNase and RNase	Page S19
Figure S20	Optimized structure, cartesian coordinates and RESP charges of ligand 1	
Figure S21	Optimized structure, cartesian coordinates and RESP charges of ligand 2	Page S23 Page S26
Figure S22	Optimized structure, cartesian coordinates and RESP charges of ligand 3	Page S29
Figure S23	Isosurface images of the Frontier Molecular Orbitals of ligands	Page S30
Figure S24	Docked structures of ligand 1 used for simulation	Page S31
Figure S25	Per- nucleotide RMSF values of <i>c-MYC</i> G4 DNA	Page S31
Figure S26	Axial view of the pose 1 and pose 2 of the ligand 1	Page S32
Figure S27	Major non covalent interactions of the ligand 1 poses with the c -MYC G4	Page S33
Figure S28	Orientation of ligand 1 with Telomeric Antiparallel G4 DNA	Page S34
Figure S29	Orientation of ligand 1 with Telomeric hybrid 2 G4 DNA	Page S35
Table S1	DNA sequences used for various experiments	Page S36
Table S2	Binding energy parameters of <i>c-MYC</i> G4-ligand complex	Page S36
¹ H and ¹³ C spe	ectra of compound 5	Page S37
¹ H and ¹³ C spe	ectra of compound 7	Page S38
¹ H and ¹³ C spe	ectra of compound 9a	Page S39
¹ H and ¹³ C spe	ectra of compound 11a	Page S40
¹ H and ¹³ C spe	ectra of ligand 1	Page S41
¹ H and ¹³ C spe	ectra of compound 9b	Page S42
¹ H and ¹³ C spe	ectra of compound 11b	Page S43
¹ H and ¹³ C spe	ectra of ligand 2	Page S44
¹ H and ¹³ C spe	ectra of compound 8	Page S45
¹ H and ¹³ C spe	ectra of compound 10	Page S46
¹ H and ¹³ C spe	ectra of compound 12	Page S47
¹ H and ¹³ C spe	ectra of ligand 3	Page S48

CD titration spectra of *c-MYC* DNA in the absence of added metal ions

Figure S1. CD titration spectra of *c-MYC* DNA (10 μ M in 10 mM lithium cacodylate buffer, pH 7.2) with (A) ligand **2** and (B) ligand **3** in the absence of added metal ions

Figure S2. CD titration spectra of *c-MYC* DNA (10 μ M in 10 mM lithium cacodylate buffer, pH 7.2) with (A) ligand **1**; (B) ligand **2** and (C) ligand **3** in the presence of 1 mM KCl and 99 mM LiCl.

Figure S3. CD titration spectra of *c*-*KIT 1* DNA (10 μ M in 10 mM lithium cacodylate buffer, pH 7.2) with (A) ligand **2** and (B) ligand **3** in the absence of added metal ions.

Figure S4. CD titration spectra of *c*-*KIT 1* DNA (10 μ M in 10 mM lithium cacodylate buffer, pH 7.2) with (A) ligand **1**; (B) ligand **2** and (C) ligand **3** in the presence of 10 mM KCl and 90 mM LiCl.

Figure S5. CD titration spectra of telomeric DNA (10 μ M in 10 mM lithium cacodylate buffer, pH 7.2) with (A) ligand **2** and (B) ligand **3** in the absence of added metal ions.

Figure S6. CD titration spectra of telomeric DNA (10 μ M in 10 mM lithium cacodylate buffer, pH 7.2) with (A) ligand **1**; (B) ligand **2** and (C) ligand **3** in the presence of 10 mM KCl and 90 mM LiCl.

CD titration spectra of *h-RAS 1* DNA in the absence of added metal ions

Figure S7. CD titration spectra of *h*-*RAS 1* DNA (10 μ M in 10 mM lithium cacodylate buffer, pH 7.2) with (A) ligand **2** and (B) ligand **3** in the absence of added metal ions.

Figure S8. CD titration spectra of *h*-*RAS 1* DNA (10 μ M in 10 mM lithium cacodylate buffer, pH 7.2) with (A) ligand **1**; (B) ligand **2** and (C) ligand **3** in the presence of 50 mM KCl and 50 mM LiCl.

CD melting curves of *c-MYC*, *h-RAS 1* and duplex DNAs with ligands

Figure S9. Normalized CD melting curve for 10 μ M of (A) *c-MYC* (1 mM KCl and 99 mM LiCl); (B) *h*-*RAS 1*(10 mM KCl and 90 mM LiCl) and (C) duplex DNA (10 mM KCl and 90 mM LiCl) in 10 mM lithium cacodylate buffer, pH 7.2; in the absence and presence of 3 molar equivalent of ligands.

Absorption and emission spectra of ligand 2 in different solvents

Figure S10. Absorbance and emission spectra of ligand $2(30 \ \mu M)$ in the presence of various solvents.

Absorption and emission spectra of ligand 3 in different solvents

Figure S11. Absorbance and emission spectra of ligand $3 (30 \mu M)$ in the presence of various solvents.

Fluorimetric titration curves of ligand 1 with telomeric G4 and duplex DNAs

Figure S12. Fluorescence emission spectra of ligand **1** (5 μ M in 10 mM lithium cacodylate buffer, pH 7.2) along with (A) telomeric G4 (0-4 μ M in 10 mM KCl and 90 mM LiCl) and (B) duplex DNA (0-5 μ M in 10 mM KCl and 90 mM LiCl).

Binding curves of ligand 1 with telomeric G4 and duplex DNAs

Figure S13. Binding curve (F/F0 Vs nC_{DNA}/C_{ligand}) of ligand **1** (5 μ M in 10 mM lithium cacodylate buffer, pH 7.2) along with (A) telomeric G4 (0-4 μ M in 10 mM KCl and 90 mM LiCl) and (B) duplex DNA (0-5 μ M in 10 mM KCl and 90 mM LiCl).

Fluorimetric titration curves of ligand 2 with different DNAs

Figure S14. Fluorescence emission spectra of ligand **2** (5 μ M in 10 mM lithium cacodylate buffer, pH 7.2) along with (A) *c-MYC* G4 (0-6 μ M in 1 mM KCl and 99 mM LiCl); (B) *c-KIT 1* G4 (0-10 μ M in 10 mM KCl and 90 mM LiCl); (C) *h-RAS 1* G4 (0-9 μ M in 50 mM KCl and 50 mM LiCl); (D) Telomeric

G4 (0-4 μ M in 10 mM KCl and 90 mM LiCl) and (E) duplex DNA (0-4 μ M in 10 mM KCl and 90 mM LiCl).

Binding curves of ligand 2 with different DNAs

Figure S15. Binding curve (F/F0 Vs nC_{DNA}/C_{ligand}) of ligand **2** (5 μ M in 10 mM lithium cacodylate buffer, pH 7.2) along with (A) *c-MYC* G4 (0-6 μ M in 1 mM KCl and 99 mM LiCl); (B) *c-KIT 1* G4 (0-10 μ M in 10 mM KCl and 90 mM LiCl); (C) *h-RAS 1* G4 (0-9 μ M in 50 mM KCl and 50 mM LiCl); (D) Telomeric G4 (0-4 μ M in 10 mM KCl and 90 mM LiCl) and (E) duplex DNA (0-4 μ M in 10 mM KCl and 90 mM LiCl).

Fluorimetric titration curves of ligand 3 with different DNAs

Figure S16. Fluorescence emission spectra of ligand **3** (5 μ M in 10 mM lithiumcacodylate buffer, pH 7.2) along with (A) *c-MYC* G4 (0-5 μ M in 1 mM KCl and 99 mM LiCl); (B) *c-KIT 1* G4 (0-3 μ M in 10 mM KCl and 90 mM LiCl); (C)*h-RAS 1* G4 (0-4 μ M in 50 mM KCl and 50 mM LiCl); (D) Telomeric G4 (0-2 μ M in 10 mM KCl and 90 mM LiCl) and (E) duplex DNA (0-4 μ M in 10 mM KCl and 90 mM LiCl).

TCSPC plots of ligands with different DNAs

Figure S17. Fluorescence decay traces of (A) ligand **2** and (B) ligand **3** (5 μ M in 10 mM lithium cacodylate buffer, pH 7.2) at 575 nm in the absence and presence of G4 DNAs at different solution conditions in (1) 10 mM lithium cacodylate buffer, pH 7.2; ligand **2** and **3** along with (2) *c-MYC* DNA in 1 mM KCl and 99 mM LiCl; (3) *c-KIT1* DNA in 10 mM KCl and 90 mM LiCl; (4) *h-RAS1* in 50 mM KCl and 50 mM LiCl; (5) Telomeric DNA in 10 mM KCl and 90 mM LiCl and (6) duplex DNA in 10 mM KCl and 90 mM LiCl.

Figure S18. Concentration-dependent percentage cell viabilities determined by MTT assay for; (A) HeLa cells in presence of ligand **1** (15μ M – 105μ M); (B) Lenti-X cells in presence of ligand **1** (10μ M – 110μ M) and; (C) HepG2 cells in presence of ligand **1** (10μ M – 100μ M) for 24 h. The results are the mean value of three replicates. Error bars denote standard deviation (SD) for n = 3.

Fluorescence of ligand 1 in cells treated with DNase and RNase

Figure S19. Mean fluorescence intensities of fixed HeLa cells stained with ligand 1 (5 μ M, 2 h); with and without DNase (0.1 gm/ml, 30 min) and RNase (0.1 gm/ml, 30 min) treatment.

Optimized structure, cartesian coordinates and RESP charges of ligand 1 used for docking

@<TRIPOS>MOLECULE

MOL

61	65	1	0	0

SMALL Resp

@<TRIPOS>ATOM

- \11\11								
1	C1	-5.3890	1.8250	2.1080	ca	1	MOL	-0.141033
2	C2	-4.4200	1.2680	1.3330	ca	1	MOL	-0.130594
3	C3	-4.7030	0.1810	0.4660	ca	1	MOL	-0.058621
4	C4	-6.0190	-0.3260	0.4500	ca	1	MOL	0.267613
5	C5	-7.0150	0.2620	1.2540	ca	1	MOL	-0.317736
6	C6	-6.7000	1.3170	2.0590	ca	1	MOL	0.004079
7	H1	-5.1570	2.6460	2.7600	ha	1	MOL	0.171088
8	H2	-3.4200	1.6480	1.3920	ha	1	MOL	0.148530
9	C7	-3.7010	-0.4190	-0.3650	ca	1	MOL	0.314261
10	H3	-8.0190	-0.1080	1.2440	ha	1	MOL	0.195175
11	H4	-7.4650	1.7610	2.6690	ha	1	MOL	0.163783
12	C8	-5.3790	-1.9600	-1.1020	ca	1	MOL	0.079378
13	C9	-4.0800	-1.5020	-1.1380	ca	1	MOL	-0.384766
14	H5	-5.6800	-2.7890	-1.7110	h4	1	MOL	0.194083
15	H6	-3.3980	-1.9720	-1.8170	ha	1	MOL	0.212747
16	C10	-7.6880	-1.9510	-0.4020	c3	1	MOL	-0.214434
17	H7	-7.9760	-2.3000	0.5780	h1	1	MOL	0.136452
18	H8	-8.3720	-1.1910	-0.7460	h1	1	MOL	0.136452
19	H9	-7.7050	-2.7790	-1.0910	h1	1	MOL	0.136452
20	N1	-6.3180	-1.4070	-0.3560	na	1	MOL	-0.006643
21	C11	-2.3380	0.1130	-0.4260	ce	1	MOL	-0.340841
22	H10	-2.2250	1.1630	-0.2520	ha	1	MOL	0.200649
23	C12	-1.2610	-0.6420	-0.6620	cf	1	MOL	0.004800
24	H11	-1.3920	-1.7070	-0.7550	ha	1	MOL	0.136946

25	C13	0.1190	-0.1990	-0.7700	cd	1	MOL	-0.085755
26	C14	0.6960	1.1270	-0.9310	ca	1	MOL	0.083565
27	C15	1.1650	-1.0650	-0.7550	cc	1	MOL	-0.209961
28	C16	2.0810	0.9530	-0.9940	ca	1	MOL	0.098693
29	C17	0.1770	2.4180	-1.0750	ca	1	MOL	-0.180409
30	H12	1.1470	-2.1330	-0.6690	h4	1	MOL	0.214214
31	C18	2.9620	2.0150	-1.1810	ca	1	MOL	-0.271541
32	C19	1.0390	3.4750	-1.2520	ca	1	MOL	-0.155156
33	H13	-0.8800	2.5990	-1.0710	ha	1	MOL	0.156640
34	C20	2.4240	3.2760	-1.3050	ca	1	MOL	-0.083273
35	H14	4.0250	1.8700	-1.2530	ha	1	MOL	0.174305
36	H15	0.6470	4.4690	-1.3660	ha	1	MOL	0.160749
37	H16	3.0730	4.1180	-1.4560	ha	1	MOL	0.151625
38	N2	2.3530	-0.4030	-0.8720	na	1	MOL	-0.025140
39	C21	3.6570	-1.0110	-0.9100	c3	1	MOL	0.004374
40	H17	3.5350	-2.0460	-1.1940	h1	1	MOL	0.095793
41	H18	4.2450	-0.5320	-1.6810	h1	1	MOL	0.095793
42	C22	4.3190	-0.8940	0.4750	c3	1	MOL	-0.281925
43	H19	3.7750	-1.5070	1.1800	hx	1	MOL	0.165427
44	H20	4.2680	0.1280	0.8140	hx	1	MOL	0.165427
45	C23	6.6910	-0.3490	-0.1300	c3	1	MOL	-0.070540
46	C24	6.2260	-1.2360	1.9960	c3	1	MOL	-0.070540
47	C25	6.8370	0.8270	0.8400	c3	1	MOL	0.013750
48	H21	7.6300	-0.8670	-0.2660	hx	1	MOL	0.115399
49	H22	6.3040	-0.0910	-1.1030	hx	1	MOL	0.115399
50	C26	6.5160	0.2460	2.2380	c3	1	MOL	0.013750
51	H23	5.4760	-1.6690	2.6410	hx	1	MOL	0.115399
52	H24	7.1270	-1.8280	2.0650	hx	1	MOL	0.115399
53	H25	7.8410	1.2250	0.7830	hc	1	MOL	0.046130
54	H26	6.1620	1.6340	0.5870	hc	1	MOL	0.046130
55	H27	5.6680	0.7460	2.6860	hc	1	MOL	0.046130
56	H28	7.3440	0.3500	2.9250	hc	1	MOL	0.046130
57	C27	5.9340	-2.7100	0.0290	c3	1	MOL	-0.319142
58	H29	5.2480	-3.3710	0.5390	hx	1	MOL	0.168868
59	H30	5.7430	-2.7230	-1.0330	hx	1	MOL	0.168868
60	H31	6.9470	-3.0320	0.2090	hx	1	MOL	0.168868
61	N3	5.7630	-1.3250	0.5560	n4	1	MOL	0.098737
@ <tri< td=""><td>POS>BON</td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td></tri<>	POS>BON	ND						
1	1	2	ar					
2	1	6	ar					
3	1	7	1					
4	2	3	ar					

5	2	8	1
6	3	4	ar
7	3	9	ar
8	4	5	ar
9	4	20	1

10	5	6	ar
11	5	10	1
12	6	11	1
13	9	13	ar
14	9	21	1
15	12	13	ar
16	12	14	1
17	12	20	2
18	13	15	1
19	16	17	1
20	16	18	1
21	16	19	1
22	16	20	1
23	21	22	1
24	21	23	2
25	23	24	1
26	23	25	1
27	25	26	1
28	25	27	2
29	26	28	ar
30	26	29	ar
31	27	30	1
32	27	38	1
33	28	31	ar
34	28	38	1
35	29	32	ar
36	29	33	1
37	31	34	ar
38	31	35	1
39	32	34	ar
40	32	36	1
41	34	37	1
42	38	39	1
43	39	40	1
44	39	41	1
45	39	42	1
46	42	43	1
47	42	44	1
48	42	61	1
49 - 0	45	47	1
50	45	48	1
51	45	49	1
52	45	61	1
53	46	50	1
54	46	51	1
55	46	52	1
56	46	61	1

57	47	50	1					
58	47	53	1					
59	47	54	1					
60	50	55	1					
61	50	56	1					
62	57	58	1					
63	57	59	1					
64	57	60	1					
65	57	61	1					
@ <tri< td=""><td>POS>SUBS</td><td>STRUCT</td><td>URE</td><td></td><td></td><td></td><td></td><td></td></tri<>	POS>SUBS	STRUCT	URE					
1	MOL	1	TEMP	0	****	****	0	ROOT

Figure S20. The optimized structure of ligand **1** which was used for docking. The ligand was optimized at HF/6-31G* theory level in Gaussian 16. The ESP charges were then calculated in Gaussian 16. The Cartesian coordinates and RESP charges were then calculated in SYBL Mol2 format using antechamber in AMBER 18. Carbon atoms are represented using green, nitrogen atoms using blue and hydrogen atoms using light grey.

Optimized structure, cartesian coordinates and RESP charges of ligand 2

8	H2	-2.0550	1.7420	1.2680	ha	1	MOL	0.141062
9	C7	-2.3110	-0.4360	-0.3510	ca	1	MOL	0.367912
10	H3	-6.7300	0.2700	0.7850	ha	1	MOL	0.201948
11	H4	-6.1860	2.2080	2.1180	ha	1	MOL	0.169680
12	C8	-4.0120	-1.9230	-1.1410	ca	1	MOL	0.093769
13	C9	-2.6860	-1.5510	-1.0780	ca	1	MOL	-0.420022
14	H5	-4.3110	-2.7770	-1.7160	h4	1	MOL	0.194743
15	H6	-1.9760	-2.1140	-1.6480	ha	1	MOL	0.227796
16	C10	-6.3720	-1.7150	-0.6820	c3	1	MOL	-0.258947
17	H7	-6.7760	-1.9650	0.2870	h1	1	MOL	0.151416
18	H8	-6.9640	-0.9420	-1.1470	h1	1	MOL	0.151416
19	H9	-6.3800	-2.5920	-1.3060	h1	1	MOL	0.151416
20	N1	-4.9770	-1.2550	-0.5370	na	1	MOL	-0.022938
21	C11	-0.9120	0.0030	-0.3110	ce	1	MOL	-0.368396
22	H10	-0.7430	1.0570	-0.2300	ha	1	MOL	0.204577
23	C12	0.1250	-0.8370	-0.3490	cf	1	MOL	0.009083
24	H11	-0.0710	-1.8970	-0.3510	ha	1	MOL	0.138564
25	C13	1.5380	-0.4880	-0.3420	cd	1	MOL	-0.080851
26	C14	2.2150	0.7760	-0.6000	ca	1	MOL	0.103164
27	C15	2.5140	-1.3940	-0.0880	сс	1	MOL	-0.258898
28	C16	3.5840	0.5310	-0.4660	ca	1	MOL	0.047044
29	C17	1.7990	2.0580	-0.9730	ca	1	MOL	-0.184269
30	HI2	2.4160	-2.4390	0.1310	h4	l	MOL	0.227034
31	C18	4.5460	1.5150	-0.6730	ca	1	MOL	-0.266520
32	C19	2.7420	3.0400	-1.1750	ca	1	MOL	-0.165137
33	H13	0.7630	2.2860	-1.1260	ha	1	MOL	0.166402
34 25	C20	4.1070	2.7710	-1.0240		1	MOL	-0.088708
35	H14	5.6000	1.3150	-0.5880	na ha	1	MOL	0.171181
30 27		2.4300	4.0200	-1.4040	na ho	1	MOL	0.1/1181 0.162018
20	П10 N2	4.0220	0.8000	-1.1970	na	1	MOL	0.103018
20 20	C21	5.7510	-0.8090	-0.1570	11a	1	MOL	0.071003
39 40	U17	J.0050 4.8610	-1.4/40	0.0490	65 h1	1	MOL	-0.255165
40	П1/ Ц19	4.0010	-2.3390	-0.0890	111 h1	1	MOL	0.142002
41	C^{22}	5 5570	-1.1410	-0.7070	111 03	1	MOL	0.142002
42	U22 Н10	1 03/0	-1.1920	2 2220	by	1	MOL	0.104749
43 44	H20		-0.1330	1.6340	hy	1	MOL	0.078729
45	H21	7 3080	-1.6170	1.03+0 2 5440	hn	1	MOL	0.339143
	H22	6 9260	-2.8060	2.5440	hn	1	MOL	0.339143
40 47	H23	7 5990	-2.0000	0.9550	hn	1	MOL	0.339143
48	N3	6 9350	-1 8010	1 6200	n4	1	MOL	-0 391223
@ <tri< td=""><td>POS>BON</td><td>JD</td><td>1.0010</td><td>1.0200</td><td></td><td>1</td><td>MOL</td><td>0.371223</td></tri<>	POS>BON	JD	1.0010	1.0200		1	MOL	0.371223
1	1	2	ar					
2	1	<u>-</u> 6	ar					
3	1	7	1					
4	2	3	ar					
5	$\overline{2}$	8	1					
6	3	4	ar					
7	3	9	ar					

8	4	5	ar					
9	4	20	1					
10	5	6	ar					
11	5	10	1					
12	6	11	1					
13	9	13	ar					
14	9	21	1					
15	12	13	ar					
16	12	14	1					
17	12	20	2					
18	13	15	1					
19	16	17	1					
20	16	18	1					
21	16	19	1					
22	16	20	1					
23	21	22	1					
24	21	23	2					
25	23	24	1					
26	23	25	1					
27	25	26	1					
28	25	27	2					
29	26	28	ar					
30	26	29	ar					
31	27	30	1					
32	27	38	1					
33	28	31	ar					
34	28	38	1					
35	29	32	ar					
36	29	33	1					
37	31	34	ar					
38	31	35	1					
39	32	34	ar					
40	32	36	1					
41	34	37	1					
42	38	39	1					
43	39	40	1					
44	39	41	1					
45	39	42	1					
46	42	43	1					
47	42	44	1					
48	42	48	1					
49	45	48	1					
50	46	48	1					
51	47	48	1					
@ <trip< td=""><td>POS>SUBS</td><td>STRUCTU</td><td>RE</td><td></td><td></td><td></td><td></td><td></td></trip<>	POS>SUBS	STRUCTU	RE					
1	MOL	1	TEMP	0	****	****	0	ROOT
E , U	31 The set	instant at	· · · · · · · · · · · · · · · · · · ·	. 1 3 TL . 1			A LIE/C 2	1 . (1 + + + 1)

Figure S21. The optimized structure of ligand **2**. The ligand was optimized at $HF/6-31+G^{**}$ theory level in Gaussian 16. The ESP charges were then calculated in Gaussian 16. The Cartesian coordinates and RESP charges were then calculated in SYBL Mol2 format using antechamber in AMBER 18.

Carbon atoms are represented using magenta, nitrogen atoms using blue and hydrogen atoms using light grey.

Optimized structure, cartesian coordinates and RESP charges of ligand 3

@<TRIPOS>MOLECULE

MOL								
	48	51	1	0	0			
SMALL								
Resp								
@ <tripc< td=""><td>DS>ATO</td><td>Μ</td><td></td><td></td><td></td><td></td><td></td><td></td></tripc<>	DS>ATO	Μ						
1	C1	-5.2820	-0.9220	2.7910	ca	1	MOL	-0.144016
2	C2	-4.3960	-0.4990	1.8520	ca	1	MOL	-0.125536
3	C3	-4.7580	-0.4040	0.4830	ca	1	MOL	-0.061243
4	C4	-6.0640	-0.7910	0.1180	ca	1	MOL	0.267665
5	C5	-6.9750	-1.2240	1.1010	ca	1	MOL	-0.317433
6	C6	-6.5870	-1.2810	2.4070	ca	1	MOL	0.001964
7	H1	-4.9910	-0.9890	3.8220	ha	1	MOL	0.170428
8	H2	-3.3990	-0.2460	2.1510	ha	1	MOL	0.142409
9	C7	-3.8410	0.0480	-0.5240	ca	1	MOL	0.317877
10	H3	-7.9720	-1.5120	0.8370	ha	1	MOL	0.194204
11	H4	-7.2890	-1.6120	3.1510	ha	1	MOL	0.163356
12	C8	-5.5760	-0.3450	-2.1290	ca	1	MOL	0.074429
13	C9	-4.2940	0.0560	-1.8340	ca	1	MOL	-0.387021
14	H5	-5.9330	-0.3240	-3.1390	h4	1	MOL	0.193429
15	H6	-3.6860	0.4240	-2.6350	ha	1	MOL	0.214397
16	C10	-7.8000	-1.1320	-1.6200	c3	1	MOL	-0.212384
17	H7	-7.9830	-2.1630	-1.3580	h1	1	MOL	0.135075
18	H8	-8.5230	-0.4900	-1.1390	h1	1	MOL	0.135075
19	H9	-7.8830	-1.0190	-2.6880	h1	1	MOL	0.135075
20	N1	-6.4380	-0.7460	-1.2100	na	1	MOL	-0.005273
21	C11	-2.5010	0.5200	-0.1820	ce	1	MOL	-0.366550
22	H10	-2.3730	0.9340	0.7950	ha	1	MOL	0.209419

23	C12	-1.4570	0.4530	-1.0190	cf	1	MOL	0.036293
24	H11	-1.5980	-0.0310	-1.9710	ha	1	MOL	0.127797
25	C13	-0.1090	0.9360	-0.8020	cd	1	MOL	-0.118026
26	C14	0.4730	1.7700	0.2390	са	1	MOL	0.069088
27	C15	0.8970	0.6900	-1.6860	cc	1	MOL	-0.213252
28	C16	1.8140	1.9630	-0.1130	са	1	MOL	0.117934
29	C17	-0.0140	2.3940	1.3920	ca	1	MOL	-0.173234
30	H12	0.8550	0.1330	-2.6010	h4	1	MOL	0.220151
31	C18	2.6750	2.7570	0.6430	са	1	MOL	-0.284663
32	C19	0.8320	3 1710	2 1480	ca	1	MOL	-0 173699
33	H13	-1.0400	2.2960	1.6900	ha	1	MOL	0.153246
34	C20	2.1680	3.3550	1.7740	ca	1	MOL	-0.076090
35	H14	3 6940	2,9320	0 3490	ha	1	MOL	0 166740
36	H15	0 4610	3 6590	3 0310	ha	1	MOL	0 162874
37	H16	2,8030	3 9830	2 3710	ha	1	MOL	0 149345
38	N2	2.0600	1 2710	-1 2910	na	1	MOL	0.030872
39	C21	3 2820	1.2710	-2.0710	c3	1	MOL	-0 181863
40	H17	3.0130	1 2930	-3 1180	h1	1	MOL	0.138883
41	H18	3 8050	2 2070	-1 8780	h1	1	MOL	0.138883
$\frac{1}{42}$	C^{22}	<i>4</i> 2070	0.0750	-1 8320	c3	1	MOL	0.039540
42	H19	3 6440	-0.8360	-1 9990	hc	1	MOL	0.039340
43 44	H20	2.0440 2.9840	0.0300	-2 5870	hc	1	MOL	0.038762
45	C23	4 8150	0.1220	-0.4310	c3	1	MOL	-0 211737
46	H21	4.0130	0.0040	0.4510	hy	1	MOL	0.107019
40	H22	4.0500 5.4210	0.0050	-0.2870	hy	1	MOL	0.107019
-77	C24	5.+210 6 2220	-0.9620	1 3110	c3	1	MOL	-0.058084
-0 /0	C_{24}	0.2220 A 9740	-0.9020	-0.0780	c3	1	MOL	-0.058084
	C25		-2.4030	1 7260	c3	1	MOL	-0.030004
51	H23	5 3990	-0 5970	1.7200	hy	1	MOL	0.049768
52	H24	7 0190	-0 2340	1.3350	hy	1	MOL	0.089768
53	C27	5 8260	-3 3230	0.8000	c3	1	MOL	-0.049737
53 54	H25	<i>4</i> 8260	-2 7600	-1 0850	hy	1	MOL	0.049768
55	H26	4.0200	-2 2080	0.3710	hy	1	MOL	0.089768
56	H27	7 6940	-2 5310	1 6150	hc	1	MOL	0.067819
50 57	H28	6 3960	-2 5350	2 7700	hc	1	MOL	0.067819
58	H20	6.3200	-3 9340	0.1980	hc	1	MOL	0.067819
59	H30	5 1890	-3 9980	1 3550	hc	1	MOL	0.067819
60	N3	5 7090	-1 0860	-0 1070	n4	1	MOL	0.298433
61	C28	6 8690	-1 1530	-1 0490	c3	1	MOL	-0.336301
62	H31	6 5220	-1 4140	-2 0350	hy	1	MOL	0.159057
63	H32	7 3570	_0 1900	-1 0710	hy	1	MOL	0.159057
64	H32	7 5660	-0.1900	-0.7090	hv	1	MOL	0.159057
		7.3000 D	-1.9010	-0.7090	ПХ	1	MOL	0.139037
1	1	2	or					
1	1	6	ar					
2	1	07	ai 1					
5 Л	1 2	2	l ar					
+ 5	$\frac{2}{2}$	2	ai 1					
5	∠ 3	о Л	l ar					
7	3	+ 0	ai					
/	3	フ	ai					

8	4	5	ar
9	4	20	1
10	5	6	ar
11	5	10	1
12	6	11	1
13	9	13	ar
14	9	21	1
15	12	13	ar
16	12	14	1
17	12	20	2
18	13	15	1
19	16	17	1
20	16	18	1
21	16	19	1
22	16	20	1
23	21	22	1
24	21	23	2
25	23	24	1
26	23	25	1
- ° 27	25	<u>-</u> 26	1
28	25	27	2
29	26	28	ar
30	26	29	ar
31	27	30	1
32	27	38	1
33	28	31	ar
34	28	38	1
35	29	32	ar
36	29	33	1
37	31	34	ar
38	31	35	1
39	32	34	ar
40	32	36	1
41	34	37	1
42	38	39	1
43	39	40	1
44	39	41	1
45	39	42	1
46	42	43	1
47	42	44	1
48	42	45	1
49	45	46	1
50	45	47	1
51	45	60	1
52	48	50	1
53	48	51	1
54	48	52	1
55	48	60	1
56	49	53	1
57	49	54	1

58	49	55	1					
59	49	60	1					
60	50	53	1					
61	50	56	1					
62	50	57	1					
63	53	58	1					
64	53	59	1					
65	60	61	1					
66	61	62	1					
67	61	63	1					
68	61	64	1					
@ <trif< td=""><td>OS>SUBS</td><td>TRUCTU</td><td>IRE</td><td></td><td></td><td></td><td></td><td></td></trif<>	OS>SUBS	TRUCTU	IRE					
1	MOL	1	TEMP	0	****	****	0	
Figure S22. The optimized structure of ligand 3. The ligand was optimized at HF/6-31G* th								
in Gaussian 16. The ESP charges were then calculated in Gaussian 16. The Cartesian coord								

Figure S22. The optimized structure of ligand **3**. The ligand was optimized at HF/6-31G* theory level in Gaussian 16. The ESP charges were then calculated in Gaussian 16. The Cartesian coordinates and RESP charges were then calculated in SYBL Mol2 format using antechamber in AMBER 18. Carbon atoms are represented using yellow, nitrogen atoms using blue and hydrogen atoms using light grey.

ROOT

Isosurface images of the Frontier Molecular Oribitals of ligands

Ligand 1

Figure S23. Isosurface plots of Frontier Molecular Orbitals of (A) ligand 1; (B) ligand 2 and (C) ligand 3. The energies of the HOMO and LUMO are given.

Docked structures of ligand 1 used for simulation

Figure S24. The best conformations with lowest energy of ligand **1** with *c-MYC* G4 DNA (PDB ID: 1XAV) after docking inAutoDock 4.2.6. used for MD simulations. The 3 conformers with different binding modes were chosen from the 250 conformers generated. The ligands are represented in green color.

Per-nucleotide RMSF values of c-MYC G4 DNA

Figure S25. Per-nucleotide-RMSF values of c-MYC G4 DNA. The graphs are plotted as fluctuations against the nucleotide number from 5' to 3'.

Axial view of the pose 1 and pose 2 of the ligand 1

Figure S26. Axial view of ligand (A) pose 1 where the ligand stacked at the 5'- end and (B) Pose 2 where the ligand stacked at the 3'- end on the *c-MYC* G4 quartet. Carbon atoms of DNA are represented using white and carbon atoms of ligand are represented using green, nitrogen atoms using blue, oxygen atoms using red and phosphorus using orange-red

Major non covalent interactions of the ligand 1 poses with the c-MYC G4 DNA

Figure S27. Major interactions of the ligand **1** poses with *c-MYC* G4 DNA is represented. (A) Ligand pose 1 stacking interaction with the flanking nucleotide dT1 and the electrostatic interaction with the dG2; (B) Ligand pose 2 stacking interaction with 3' flanking nucleotide dA21 and the electrostatic interaction with dT11 and (C) Ligand pose 3 electrostatic interactions with dA21 and dG6. The dashed lines represent the electrostatic interactions. The interactions other than the stacking interactions with the G quartet are represented here.

Figure S28. Reorientation of ligand **1** during the course of simulation with Telomeric Antiparallel DNA. Frame at (A) First frame; (B) 5 ns; (C) 10 ns and (D) 500 ns.

Orientation of ligand 1 with Telomeric hybrid 2 G4 DNA

Figure S29. Reorientation of ligand **1** during the course of simulation with Telomeric hybrid 2 DNA. Frame at (A) First frame; (B) 5 ns and (C) 10 ns.

DNA sequences used for various experiments

Table S1. List of oligonucleotides used for the experiments.				
Description	Sequence			
Telomeric DNA	5'-AGGGTTAGGGTTAGGGTTAGGG-3'			
<i>c-MYC</i> DNA	5'-TGAGGGTGGGTAGGGTGGGTAA-3'			
<i>c-KIT1</i> DNA	5'-GGGAGGGCGCTGGGAGGAGGG-3'			
<i>h-RAS 1</i> DNA	5'-TCGGGTTGCGGGCGCAGGGCACGGGCG -3'			
Duplex-17 (DS17)	5'-CCAGTTCGTAGTAACCC-3'			
	5'-GGGTTACTA CGAACTGG-3'			

Binding energy Parameters of *c-MYC* G4-ligand complexes

	с-МҮС
	(PDB ID: 1XAV)
$\Delta E_{ m ELEC}$	-2298.95 ± 87.61
$\Delta E_{ m VDW}$	-85.15 ± 7.18
$\Delta E_{MM} (\Delta E_{ELEC} + \Delta E_{VDW})$	-2383.61 ± 92.50
ΔPB_{np}	-7.61 ± 0.61
ΔPB_{cal}	2313.40 ± 89.71
$\Delta PB_{solv}(\Delta PB_{np} + \Delta PB_{cal})$	2305.79 ± 89.36
$\Delta \boldsymbol{H}_{PB}(\Delta \mathbf{E}_{MM} + \Delta \mathbf{PB}_{solv})$	-77.81 ± 6.08
$\mathbf{T} \Delta \boldsymbol{S}$	-29.15 ± 9.05
$\Delta G(\Delta H_{\rm PB} - T\Delta S)$	-48.66 ± 10.54

Table S2. Binding free energy components of *c-MYC* G4 DNA and ligand 1 complex has been calculated from the last 20 ns of the 500 ns simulation by considering every 5th frame from a total of 2000 frames. The molecular-mechanical energy calculations were performed using MM/PBSA, and entropy calculations using nmode analysis. ΔE_{ELEC} is the electrostatic contribution. ΔE_{VDW} is the Vander Waals contribution. ΔE_{MM} is the total molecular mechanical energy. ΔPB_{np} is the non-polar contribution to the solvation energy. ΔPB_{cal} is the electrostatic contribution to the solvation energy. ΔPB_{cal} is the solute entropic contribution. $\Delta G(\Delta H - T\Delta S)$ is the estimated binding free energy. All the values are reported in kcal mol⁻¹. For nmode analysis parameters used were: drms = 0.5; dielec(distance dependent dielec) = 4; maxcyc = 10,000 and AMBER prescribed default values were used for PB calculations

¹H and ¹³C NMR spectra of compound 7

¹H and ¹³C NMR spectra of compound 9a

¹H and ¹³C NMR spectra of ligand 1

¹H and ¹³C NMR spectra of compound 9b

¹H and ¹³C NMR spectra of compound 11b

¹H and ¹³C NMR spectra of compound 8

S47

¹H and ¹³C NMR spectra of compound 12

