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S1. Sample characterization

Figure S1 shows the textures of the MSG-MH
particles with 300-500 um sieve fractions observed
using a stereomicroscope (SZX7, Olympus). The
particles exhibited a columnar shape with a long axis
(length: 0.5-1.5 mm). The powder XRD pattern of the
MSG-MH sample was measured using a RINT-2200V
instrument (Rigaku) with monochrome Cu-K, (40 kV,
20 mA) radiation, scanning 2 6 values of 5°-60°, and a
step of 0.02°, at a scan speed of 4° min~! (Figure S2).
The XRD pattern was consistent with the reference
pattern of MSG-MH (orthorhombic, S.G.: P2:2:2:(19),
a=17.9560,b=15.2460,c=5.5682, a. = =y=90.000,
ICDD PDF 00-029-1787).5! The MSG-MH sample was
diluted with KBr, and the FT-IR spectrum was recorded
using a FT-IR8400S instrument (Shimadzu) in the
wavenumber range of 4600—400 cm™' by diffuse
reflectance method (Figure S3). The FT-IR spectrum
was coincident with that of a database (NIST Chemistry
WebBook, SRD 69;
https://webbook.nist.gov/cgi/inchi?ID=B6004640&M
ask=80#Refs), in which the O-H and N—H stretching
bands appeared in the wavenumber region of 3700—
2500 cm!. C—H stretching bands also appeared in the
3300-2800 cm ! region. Absorption bands attributed to
various double-bonded chemical groups appeared in
the region of 1950;14;0 c’l.

Figure S1. Texture of the MSG-MH particles (300-500
pm sieve fraction).
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Figure S2. XRD pattern of the MSG-MH sample.
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Figure S3. FT-IR spectrum of the MSG-MH sample.

S2. Thermal behavior
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Figure S4. Appearances of the sample particles, once
heated to different temperatures at # = 5 K min™ and
recovered after cooling to room temperature: (a) T =
430 K (2 = 0.05), (b) T=436 K (a =0.32), (c) T =440
K (e =0.61),and (d) T = 447 K (o = 0.86).
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Figure S5. Changes in the XRD patterns during the
heating of MSG-MH according to the stepwise
isothermal program in a flow of dry N2 gas (gqv = 100
cm?® minY): (a) XRD patterns at different temperatures
and (b) comparison of the XRD patterns of the MSG-
MH and the product of the first thermal dehydration
process.
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Figure S6. Appearances of the products of the first and
second thermal dehydration processes obtained by
isothermal heating in a dry N2 gas flow: (a) product of
the first thermal dehydration process obtained at 422 K
and (b) product of the second thermal dehydration
process obtained at 461 K.
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Figure S7. Changes in the XRD patterns during the
heating of MSG-MH at 428 K in a flow of dry N2 gas
(qv = 100 cm® minY): (a) XRD patterns at different
heating times and (b) comparison of the XRD patterns
of the MSG-MH and the product of the first thermal
dehydration process.

S3. Kinetics of the thermal dehydration of
crystalline water

S3.1. Kinetic curves

5
(@) -
.8
T, 104 g
e 2
o =
— =]
-~ .8
3
&— [
=
— 11.0 &
(b) g Jos 3
/_-""'-:: 06 g
T, 104 104 2
1 gl Joz2 2
o 81 T/K 100 =
= 64 —— 414 —— 420 3
= 4] —— 416 — 422 5
3 4 ——418 g
' ~ =
2 9 I.W—mﬂ,
0 50 100 150 200
time / min

Figure S8. Kinetic curves for the thermal dehydration
of crystalline water: (a) linear nonisothermal conditions
and (b) isothermal conditions.
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S3.2 Mathematical deconvolution analysis

For MDA of the DTG peak for the thermal dehydration of crystalline water (the first mass-loss process), the
logistic power peak (LPP) function was used to fit each component DTG peak of the reactions in the low-
temperature region, whereas the Weibull function was applied to each component peaks of the reactions in the high-
temperature region.

B [ PP function:

—az-1

a t+ a,lna; —a a t + a,lna as+1
F(t) = = [1 + exp (#)] ’ exp <#> (az+1) %, (S1)
as az az

where o, a1, a2, and a3 are the amplitude, center, width (#0), and shape (>1), respectively.
B Weibull function:

1-a, 1\%~-1 1%
_ az—1\ a; |t—aq az — 1\a; t—a, as — 1\a; a;—1
o - a5 TN (] -G () o
where o, a1, a2, and a3 are the amplitude, center, width (>0), and shape (>1 01) respectively.
The typical MDA results for the DTG peaks of \\\\\\\‘\\\-

: (82)
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Q
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the thermal dehydration of the crystalline water in the - /

low- and high-temperature regions are shown in Figure é -0.05 //%K \

S9. All the DTG curves were fitted satisfactorily by the © f‘/

LPP and Weibull functions for the partially overlapping < -0.10 ? \

two and three-step processes in the low- and high- 5 / N

temperature regions, respectively. From the MDA %‘ 015 ¢ Sy Measured
results, the contributions of each component peak to the IS 0.20 Isothermal —— Calculated
overall DTG peak were calculated (Table S1). In z WASEHICIS) 777) 1st step
addition, a series of kinetic curves for each reaction step 095 ] . I S :?”d Step

was generated from the mathematically separated DTG 0 20 40 60 80 100 120 1 40 160
peaks, as shown in Figures S10 and S11, for the
reactions in the low- and high-temperature regions,
respectively.
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Figure S9. Typical MDA results for the thermal
dehydration of crystalline water under (a) isothermal
conditions at 418 K and (b) linear nonisothermal
conditions at a # of 5 K min?

Table S1. Results of the MDA and subsequent formal kinetic analysis of the thermal dehydration of crystalline
water

Ay /st M 10) PG R2b
Low 1 0.14+0.87 | 235.1+19.8 | (3.70+0.07) x 10%® | —3.18+0.24 2.16 +0.09 3.42+0.23 0.9993
2 0.86 £ 0.01 384.3+9.1 (1.41 £ 0.03) x 10% 5.17 £0.17 —-0.40+0.06 —4.31+£0.16 0.9993
High 1 0.21 £0.02 316.0+7.0 (1.46 £ 0.04) x 10% | —0.65+0.31 1.09£0.12 0.64 +0.30 0.9992
2 0.58+0.04 @ 1825+23.8 (2.26+0.01) x 10%° 0.40 + 0.05 1.00 £ 0.02 0.33 £ 0.05 0.9999

3 0.20+0.04 | 103.1+16.3 | (2.05+0.01) x 10% 1.17 £0.05 0.68+0.02 | —0.84+0.04 | 0.9999
@Average value over 0.1 < <0.9.
bDetermination coefficient of the nonlinear least-squares analysis for fitting the experimental master plot.
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Figure S10. Kinetic curves for the first and second
reaction steps of the thermal dehydration of crystalline
water under isothermal conditions (low-temperature
region): (a) the first and (b) second reaction steps.
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Figure S11. Kinetic curves for the first, second, and
third reaction steps of the thermal dehydration of
crystalline water under linear nonisothermal conditions
(high-temperature region): (a) the first, (b) second, and
(c) third reaction steps.
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The kinetic curves in Figures S10 and S11
were analyzed using the isoconversional method (eq.
(4)). The E. 1) values of the reaction step (i) at various
o1 values, determined from the Friedman plots, are
shown in Figure S12. Except for the initial part of the
first reaction step in the low-temperature region, the
Ea1i) values changed gradually as the reaction
proceeded. The average E 1) values (0.1 < a1 < 0.9)
are listed in Table S1. The experimental master plots of
dai/dbi versus aip for each reaction step were
drawn by calculating according to eq. (9), as shown in
Figures S13 and S14 for the reactions in the low and
high temperature regions, respectively. The
experimental master plots were fitted using SB(n, m, p)
(eq. (6)) by optimizing the kinetic exponents and the
A1) values through nonlinear least-squares analysis.
The optimized kinetic exponents and A4 are listed in
Table S1.
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Figure S12. Eaig values at various oy values
determined by the Friedman plots applied to the
mathematically separated kinetic curves in the (a) low-
and (b) high-temperature regions.
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S4. Kinetics of the thermally induced
intramolecular dehydration

S4.1. Kinetic curves
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Figure S15. Kinetic curves for the intramolecular
dehydration of MSG-AH to form SPyrG: (a) linear
nonisothermal conditions and (b) isothermal conditions.
The initial rapid mass-loss under isothermal conditions
was observed during the temperature rising period to
reach the programmed constant temperature.

S4.2. Mathematical deconvolution analysis

The Weuibll function (eq. (S2)) was employed
to deconvolute the thermally induced intramolecular
dehydration of MSG-AH into two reaction steps
(Figure S16). However, the acceleration part of the
DTG curve could not be satisfactorily fitted by the
Weibull function. Therefore, the acceleration part was
fitted as two peaks by the Weibull functions (Figure
S16(a)). Thereafter, the first and second peaks,
resulting from the three-peak deconvolution, were
calculated to simulate the first reaction step (Figure
S16(b)), achieving the MDA of the two-step process.
The contributions of each reaction step are listed in
Table S2. The kinetic curves at different § values,
obtained for each reaction step by MDA, are shown in
Figure S17. The average Ea2(;) values in the ax) range
of 0.1-0.9 are listed in Table S2. The experimental
master plots for each reaction step drawn using the
average values are shown in Figure S19 and the results
of fitting using SB(m, n, p) are listed in Table S2.
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Figure S16. Typical MDA results for the thermally
induced intramolecular dehydration of MSG-AH to
form SPyrG: (a) deconvolution into three peaks and (b)
the expected two-step process simulated by cumulating
peaks 1 and 2 in (a) for the first reaction step.

Table S2. Results of the MDA and the subsequent formal kinetic analysis for the thermally induced intramolecular
dehydration of MSG-AH under linear nonisothermal conditions

Ay /st

[ 073+0.04 202.7+23 (2.39+0.07) x 10'°

20 027+004 159.6+14.1 (7.73+0.03)x 10'4
2Average value over 0.1 <a <0.9.

M2y N2y P20y R2b
—-5.18+0.33 2.74 £0.13 5.68+0.32 0.9946
0.80 £ 0.05 0.87+£0.02 —0.50 £ 0.05 0.9999

bDetermination coefficient of the nonlinear least-squares analysis for fitting the experimental master plot.
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Figure S17. Kinetic curves at different g values for
each reaction step of the thermally induced
intramolecular dehydration of MSG-AH: (a) first and
(b) second reaction steps.
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