Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting information for

Importance of the ligand-to-metal charge transfer (LMCT) pathway in the photocatalytic oxidation of arsenite by TiO₂

Tianjin University, Tianjin 300350, P.R. China

Corresponding Author:

*E-mail: renhaitao@tiangong.edu.cn (H.T. Ren); xuhan@tju.edu.cn (X. Han)

¹ School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P.R. China;

² School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P.R. China;

³ Key Lab of Indoor Air Environment Quality Control, School of Chemical Engineering and Technology,

Fig. S1. Initial pH on the sorption and oxidation of As(III) by TiO_2 in the dark. Conditions: 1 g L^{-1} TiO_2 and 5 mg L^{-1} As(III).

Fig. S2 ESR spectra of DMPO- O_2 with TiO_2 under dark and UV light for 10 min at pH 8.0 and 10.0.

Fig. S3 H_2O_2 was measured by adding 8000 U mL⁻¹ CAT to the TiO_2/UV system. Conditions: 5 mg L⁻¹ As(III), 1 g L⁻¹ TiO_2 .

Fig. S4 ATR-FTIR spectra of TiO₂ with different concentrations of As(III) in the wavelength range of 3100-3970 cm⁻¹.

Fig. S5. Adsorption of As(III) by TiO_2 in the dark. Conditions: 1.0 g L^{-1} TiO_2 at pH 8.0.