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The Scheutens-Fleer SCF numerical method

for calculating the immersion of colloidal par-

ticles in a polymer brush.

The Scheutens-Fleer numerical method was developed to study the adsorp-
tion of polymer chains on a flat surface. Later the method was extended,
for example for polymer brushes1 and membranes.2 In our work, we are in-
terested in the two-gradient method2 and etc..3 The cylindrical symmetry of
the system is assumed (see the schematic figure 1): 1) there is a direction
x - distance from the cylinder axis; 2) there is the z direction - the position
on the cylinder axis (we take the grafting surface of polymer chains as the
origin).

Figure 1: Cylindrical colloidal particle embedded in a polymer brush,
schematic representation

The method is based on minimization of the free energy functional, taking
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into account the incompressibility condition

F [u,ϕ,α] = Fent[u]−
∑
x

∑
z

∑
A

uA(x, z)ϕA(x, z)+

+Fint[ϕ] +
∑
x

∑
z

α(x, z)

(∑
A

ϕA(x, z)− 1

) (1)

where ϕA(x, z) is density profile of segment type A (polymer, colloid or sol-
vent), uA(x, z) is a potential field of segment type A, α(x, z) are the Lagrange
multipliers (in this method, their combination is usually called the Lagrange
field or self-consistent field). These factors show how much a given cell is
filled with segments other than the solvent.

The conditions for the minimum of the functional will be a system of
three variations: 

∂F
∂α

= 0
∂F
∂ϕ

= 0
∂F
∂u

= 0

(2)

The first condition in eq.2 guarantees the incompressibility of the system.
The second condition in eq.2 shows how the potential field is calculated:

uA(x, z) =
∑
B

χA,B

(
ϕB(x, z)− ϕb

B

)
+ α(x, z) (3)

where χA,B is parameter Flory between segments A and B, and ϕb
B is volume

fraction of B in free bulk (equal to 1 for the solvent and zero otherwise). The
relationship between the density profiles ϕA(x, z) and potential field uA(x, z)
are very useful for building a numerical scheme.

The third condition in eq.2 goes into the usual diffusion equation, which
shows the rule for calculating back and forward propagators (Gb(s, x, z) and
Gf (s, x, z), s is the sequence number of the segment in the chain) for polymer
chain.3 In the initial conditions and the equations of the propagator steps,
the Boltzmann statistic weights G(s, x, z) are used, which are easy to find by
the formula

G(s, x, z) = exp(−uA(x, z)), (4)

where A is type of segment with number s. The static sum of the chain is
obtained from the calculated propagators

q =
∑
x

∑
z

L(x, z)
∑
s

Gf (s, x, z)Gb(s, x, z)

G(s, x, z)
(5)
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where L(x, z) is reduced cell volume. Then the density distribution is ob-
tained

ϕ(s, x, z) =
σN

q

Gf (s, x, z)Gb(s, x, z)

G(s, x, z)
(6)

(σ is polymer density and N is length of polymer chain). The most of the
numerical algorithms for solving the Scheutens-Fleer system of nonlinear SCF
equations are based on the choice of the potential field1 as an unknown
variable.

We used the package SFbox, provided by F.A.M. Leermakers and J. van
Male (from Wageningen University, the Netherlands4 , for our calculations.
One of the most powerful methods of unconstrained optimization was chosen
- Newton’s method5 which uses finite-difference formulas to calculate the
Hessian H of the minimized functional. The algorithm starts from an initial
guess for the potential field (we chose it to be a zero vector). Then, the
propagators, density profiles ϕ, gradient g, Hessian H are calculated and a
new approximation for the potential field is found using Newton’s formula
u = u−H−1g. The method ends its work when the accuracy 1e-8 is achieved.

Analytical density and osmotic pressure pro-

files calculation details

An in-house python package has been developed to solve aforesaid expressions
numerically, as there is no analytical solution in common case. The goal
was to obtain functions φ(z) and Π(z) for a given σ, N , χPS such that it
can be used in further calculations. The source code can be found here
https://github.com/miklakt/ascf_pb.

Note that the result from this step referred further as ’analytical’ even
though the actual values has been calculated numerically.

Almost every step is accompanied by root finding. In every case a root is
found using Brent’s method.

For the root finding routines let us reformulate eq. 3 (main text) to the
next equation

Z(φ, d, z) = Λ(d)2 +
3κ2

2a2
(ln(1− φ)− 2χPSφ)− z2 (7)

Where d is an arbitrary value as we do not now brush thickness yet. Λ(d)2

is found from eq. 7 (main text) taking D = d.
Let us define a function φ∗(z, d), where the value is the root of eq. 7 for

a given z, d.
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For the root finding we need the sign changing interval. It is not enough
to set φ ∈ [0, 1) in this case, but more strict φ ∈ [φ∗

D, φ
∗
0] has to be used, where

φ∗
0 ≡ φ∗(0, d) is polymer density near the grafting surface, while φ∗

0 ≡ φ∗(d, d)
is polymer density at the end. The interval has to be strict for two reasons:
it ensures convergence and the sanity of the root.

To calculate φ∗
D eq. 6 (main text) is used, the interval be φ ∈ [0, 1). φ∗

0

is the root of eq. 8 (main text) for a given d and z = 0, the next interval
should be used φ ∈ [φ∗

D, 1).

R(d) =

∫ d

0

φ∗(z, d)dz − Na3

s
(8)

the root of this function is brush thickness D; as D � N , sign changing
interval is d ∈ (0, N ].

The final polymer density profile φ(z) = φ∗(z, d = D)
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