SUPPORTING INFORMATION

Single-Conformation Spectroscopy of Cold, Protonated ^DPG-containing peptides: Switching β-turn Types and Formation of a sequential Type II/II' Double β-turn

John T. Lawler^a, Christopher P. Harrilal^{a,‡}, Andrew F. DeBlase^{a,†},

Edwin L. Sibert III^{b,*}, Scott A. McLuckey^{a,*}, and Timothy S. Zwier^{a,c,*}

^aDepartment of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084 USA

^bDepartment of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA

^cGas Phase Chemical Physics, Sandia National Laboratories, Livermore, CA 94550 USA

Figure S2. (a) UV photofragment spectrum of protonated YA^LPGA. IR-UV hole-burning spectra of conformers (b) A, (c) B, and (d) C, with IR hole-burn laser fixed at the indicated wavenumber position. These spectra prove that there are three unique conformers of $[YA^LPGA+H]^+$.

Type II <i>,</i> A ^D P	0.00	0.00
Type II' ^D PX	14.3	0.54

Table S1. Zero-point corrected relative energies (ΔE_0) for the secondary structural motifs of each molecule.

Figure S3. Comparison of the infrared spectra of various turn types.

Conformation specific infrared spectra of (a) the Type II β -turn found in YA^DPGA, (b) the Type II' β -turn found in Conformer B of YA^DPAA (c) the double γ -turn found in Conformer A of YA^DPAA and (d) the Type II' β -turn found in YGGFL. In all cases, the peptides are protonated at the N-terminus.

Figure S4. YA^LPGA conformer B with trans amide bond

Optimized calculated structure of conformer B of $[YA^LPGA + H]^+$ with a trans amide bond (yellow lines) between Y_1 and A_2 instead of the cis amide bond in the assigned structure.

Figure S5. Comparison of the β -turns formed by (a) Y<u>A^DP</u>GA and (b) Conformer B of YA^DPAA. The underlined region denotes the location of the turn. Short-hand notation describing the hydrogen bonding pattern of both molecules is shown with the β -turn forming hydrogen bonds labelled in red.