Supporting Information for: CASPT2 molecular geometries of Fe(II) spin-crossover complexes

Brian A. Finney, Sabyasachi Roy Chowdhury, Clara Kirkvold, and Bess Vlaisavljevich Department of Chemistry, University of South Dakota, 414 E Clark St., Vermillion SD, 57069, United States

Table of Contents.

Table S1. CASPT2 Fe-L bond distances for [FeL ₆] ²⁺
Table S2. CASPT2 Fe-L bond distances for [FeL ₆] ²⁺
Table S3. [Fe(tacn)2] ²⁺ bond distances active space and basis set size
Table S4. DFT/def2-TZVP optimized Fe-N bond distances for the [Fe(tacn) ₂] ²⁺ complex4
Table S5. CASPT2 and DFT computed Fe-N bond distances for the [Fe(bpy) ₃] ²⁺ complex4
Table S6. CASPT2 and DFT computed Fe-N bond distances for the $[Fe(pic)_3]^{2+}$ complex
Table S7. Percent contributions from the HF determinant to the CASSCF wavefunction
Table S8. Coupled cluster T1 amplitudes
Table S9. CASPT2 vibrational frequencies for the HS [Fe(tacn) ₂] ²⁺ complex6
Table S10. CASPT2 vibrational frequencies for the LS [Fe(tacn)2] ²⁺ complex

· · · · · · · · · · · · · · · · · · ·		Fe-L Distances		
L	Method	HS	LS	
NH ₃	CASPT2	2.257, 2.258, 2.258	1.990, 1.996, 2.091	
		2.258, 2.262, 2.264	2.091, 2.091, 2.092	
	TPSSh	2.273, 2.275, 2.276	2.079, 2.080, 2.080	
		2.280, 2.294, 2.294	2.080, 2.080, 2.080	
	PBE	2.279, 2.280, 2.283	2.073, 2.073, 2.073	
		2.286, 2.300, 2.300	2.073, 2.074, 2.074	
	M06	2.251, 2.253, 2.270	2.086, 2.087, 2.088	
		2.271, 2.283, 2.285	2.088, 2.093, 2.094	
	M06-L	2.240, 2.241, 2.262	2.081, 2.081, 2.081	
		2.262, 2.273, 2.274	2.083, 2.086, 2.086	
NCH	CASPT2	2.154, 2.154, 2.163	1.907, 1.907, 1.907	
		2.164, 2.164, 2.165	1.907, 1.907, 1.907	
	TPSSh	2.159, 2.159, 2.161	1.928, 1.928, 1.928	
		2.161, 2.170, 2.170	1.928, 1.928, 1.928	
	PBE	2.150, 2.150, 2.150	1.908, 1.908, 1.908	
		2.150, 2.176, 2.176	1.908, 1.908, 1.908	
	M06	2.162, 2.162, 2.166	1.943, 1.943, 1.943	
		2.166, 2.167, 2.167	1.943, 1.943, 1.943	
	M06-L	2.190, 2.190, 2.190	1.959, 1.959, 1.960	
		2.190, 2.192, 2.192	1.960, 1.960, 1.960	
PH_3	CASPT2	2.596, 2.596, 2.617	2.207, 2.207, 2.209	
		2.617, 2.618, 2.618	2.209, 2.211, 2.211	
	TPSSh	2.624, 2.625, 2.632	2.262, 2.262, 2.262	
		2.633, 2.662, 2.664	2.262, 2.262, 2.263	
	PBE	2.571, 2.571, 2.591	2.247, 2.247, 2.248	
		2.593, 2.628, 2.630	2.248, 2.248, 2.249	
	M06	2.609, 2.634, 2.635	2.272, 2.273, 2.273	
		2.635, 2.648, 2.657	2.274, 2.275, 2.275	
	M06-L	2.573, 2.575, 2.597	2.249, 2.249, 2.250	
		2.602, 2.604, 2.609	2.250, 2.250, 2.253	
CO	CASPT2	2.283, 2.284, 2.286	1.863, 1.863, 1.864	
		2.286, 2.323, 2.325	1.864, 1.864, 1.864	
	TPSSH	2.263, 2.263, 2.264	1.919, 1.919, 1.919	
		2.264, 2.330, 2.331	1.919, 1.919, 1.919	
	PBE	2.219, 2.219, 2.221	1.894, 1.894, 1.894	
		2.221, 2.319, 2.319	1.894, 1.894, 1.894	
	M06	2.288, 2.288, 2.288	1.933, 1.933, 1.933	
		2.288, 2.344, 2.345	1.933, 1.933, 1.933	
	M06-L	2.299, 2.300, 2.302	1.940, 1.940, 1.940	
CULL		2.302, 2.358, 2.358	1.940, 1.940, 1.940	
CNH	CASP12	2.203, 2.203, 2.203	1.845, 1.845, 1.846	
		2.203, 2.255, 2.255	1.846, 1.864, 1.846	
	TPSSh	2.212, 2.213, 2.213	1.901, 1.901, 1.901	
	222	2.213, 2.268, 2.268	1.901, 1.901, 1.901	
	PBE	2.178, 2.179, 2.179	1.882, 1.882, 1.882	
		2.179, 2.259, 2.260	1.882, 1.882, 1.882	
	M06	2.241, 2.242, 2.247	1.917, 1.917, 1.919	
		2.247, 2.301, 2.302	1.919, 1.919, 1.919	
	M06-L	2.174, 2.175, 2.196	1.885, 1.885, 1.887	
		2.198, 2.205, 2.207	1.887, 1.887, 1.887	

Table S1: CASPT2/cc-pVTZ computed Fe-L bond distances (in Angstrom) for $[FeL_6]^{2+}$ where, L = NH₃, NCH, PH₃, CO and CNH. DFT/def2-TZVP bond distances are also included for comparison.

L	Active Space	Basis set	Fe-L Distances		
	-		HS	LS	
NCH	6e,5o	all	2.169, 2.169, 2.174	1.953, 1.953, 1.953	
			2.174, 2.176, 2.176	1.953, 1.953, 1.953	
	6e,50	Fe	2.172, 2.172, 2.174	1.955, 1.955, 1.955	
			2.174, 2.177, 2.177	1.955, 1.955, 1.955	
	6e,50	Fe, N	2.169, 2.169, 2.169	1.951, 1.951, 1.951	
			2.169, 2.174, 2.174	1.951, 1.951, 1.951	
	6e,50	None	2.189, 2.189, 2.190	1.977, 1.977, 1.977	
			2.190, 2.192, 2.192	1.977, 1.977, 1.977	
	6e,10o	Fe	2.177, 2.177, 2.177	1.961, 1.961, 1.962	
			2.177, 2.178, 2.178	1.962, 1.962, 1.962	
	10e,12o	all	2.154, 2.154, 2.163	1.907, 1.907, 1.907	
			2.164, 2.164, 2.165	1.907, 1.907, 1.907	
	10e,12o	Fe	2.152, 2.142, 2.176	1.927, 1.938, 1.952	
			2.185, 2.186, 2.186	1.953, 1.969, 1.974	
CO	6e,5 <i>o</i>	all	2.281, 2.281, 2.290	1.798, 1.798, 1.798	
			2.290, 2.319, 2.319	1.798, 1.798, 1.798	
	6e,5o	Fe	2.281, 2.281, 2.290	1.819, 1.819, 1.819	
			2.290, 2.316, 2.316	1.819, 1.819, 1.819	
	6e,50	None	2.294, 2.294, 2.303	1.842, 1.842, 1.842	
			2.303, 2.329, 2.329	1.842, 1.842, 1.842	
	6e,10o	Fe	2.290, 2.290, 2.298	1.871, 1.871, 1.871	
			2.298, 2.324, 2.324	1.871, 1.871, 1.871	
	10e,12o	all	2.299, 2.300, 2.302	1.940, 1.940, 1.940	
			2.302, 2.358, 2.358	1.940, 1.940, 1.940	
	10e,12o	Fe	2.285, 2.285, 2.289	1.894, 1.894, 1.894	
			2.289, 2.318, 2.318	1.894, 1.894, 1.894	

Table S2: CASPT2 computed Fe-L bond distances (in Angstrom) for $[FeL_6]^{2+}$ where, L = NCH and CO as a function of active space and basis set. The atoms with the cc-pVTZ basis set are noted; all remaining atoms are treated with cc-pVDZ basis set.

Table S3: Fe-N bond distances (in Angstrom) of the $[Fe(tacn)_2]^{2+}$ complex as a function of basis set and
active space. The atoms with the cc-pVTZ basis set are noted; all remaining atoms are treated with cc-
pVDZ basis set.Active Basis Set Fe-N Distances
SpaceFe-N Distances
LS

Acuve	Dasis Set	Fe-N Distances		
Space		HS	LS	
6e,5o	all	2.209, 2.209, 2.222	2.034, 2.034, 2.034	
		2.222, 2.224, 2.225	2.034, 2.034, 2.034	
	Fe, N	2.207, 2.207, 2.221	2.034, 2.034, 2.035	
		2.221, 2.223, 2.223	2.035, 2.035, 2.035	
	Fe	2.215, 2.215, 2.223	2.035, 2.035, 2.036	
		2.222, 2.223, 2.224	2.036, 2.037, 2.037	
	none	2.215, 2.216, 2.222	2.043, 2.043, 2.043	
		2.223, 2.223, 2.223	2.043, 2.044, 2.044	
6e,10o	Fe	2.212, 2.214, 2.224	2.036, 2.036, 2.038	
		2.225, 2.228, 2.229	2.038, 2.038, 2.038	
10e,12o	Fe	2.212, 2.212, 2.225	2.026, 2.029, 2.034	
		2.226, 2.226, 2.227	2.038, 2.042, 2.042	

Table S4: DFT/def2-TZVP optimized Fe-N bond distances (in Angstrom) for the [Fe(tacn)₂]²⁺ complex.

Functional	Fe-N Distance		
	HS	LS	
TPSSH	2.243, 2.244, 2.251	2.048, 2.049, 2.049	
	2.253, 2.253, 2.253	2.049, 2.049, 2.050	
PBE	2.253, 2.254, 2.259	2.044, 2.044, 2.044	
	2.260, 2.262, 2.262	2.045, 2.045, 2.045	
M06	2.215, 2.219, 2.234	2.055, 2.058, 2.060	
	2.245, 2.249, 2.254	2.061, 2.067, 2.067	
M06-L	2.239, 2.242, 2.258	2.060, 2.062, 2.066	
	2.262, 2.263, 2.264	2.067, 2.067, 2.070	

Table S5: CASPT2 and DFT computed Fe-N bond distances (in Angstrom) for the $[Fe(bpy)_3]^{2+}$ complex. For the CASPT2 calculations cc-pVTZ basis set is used for the Fe and cc-pVDZ for the rest of the elements. DFT optimizations are performed with def2-TZVP basis set.

Functional	Fe-N D	Distance
	HS	LS
CASPT2	2.167, 2.168, 2.168	1.938, 1.939, 1.940
	2.168, 2.181, 2.182	1.940, 1.946, 1.946
TPSSh	2.181, 2.183, 2.187	1.983, 1.983, 1.984
	2.189, 2.204, 2.204	1.984, 1.985, 1.986
PBE	2.168, 2.174, 2.177	1.971, 1.971, 1.971
	2.189, 2.191, 2.199	1.972, 1.972, 1.973
M06	2.188, 2.188, 2.189	1.989, 1.991, 2.003
	2.195, 2.200, 2.205	2.008, 2.009, 2.014
M06-L	2.148, 2.159, 2.183	1.968, 1.971, 1.983
	2.185, 2.186, 2.197	1.996, 1.999, 2.001

Table S6: CASPT2 and DFT computed Fe-N bond distances (in Angstrom) for the $[Fe(pic)_3]^{2+}$ complex. For the CASPT2 calculations cc-pVTZ basis set is used for the Fe and cc-pVDZ for the rest of the elements. DFT optimizations are performed with def2-TZVP basis set.

	Fe-N Distance				
	Н	IS	LS		
Functional	Fe-N _{pyridine}	Fe-N _{pyridine} Fe-N _{amine}		Fe-N _{amine}	
CASPT2	2.186, 2.186 2.189	2.232, 2.235 2.236	1.954, 1.958, 1.980	2.021, 2.032 2.035	
TPSSh	2.192, 2.205 2.210	2.267, 2.270	1.991, 1.995	2.051, 2.051	
		2.271	1.997	2.053	
PBE	2.189, 2.195	2.276, 2.277	1.967, 1.970	2.049, 2.053	
	2.205	2.285	1.971	2.054	
M06	2.159, 2.188	2.243, 2.272	2.005, 2.009	2.065, 2.072	
	2.201	2.284	2.024	2.079	
M06-L	2.170, 2.177	2.243, 2.267	1.984, 1.987	2.058, 2.073	
	2.196	2.278	2.005	2.077	

Table S7. Percent contributions from the HF determinant to the CASSCF wavefunction. Results are reported on the CASPT2 minimum geometry and the cc-pVTZ basis set was used on all atoms.

Complex	HS contribution	LS contribution
$[Fe(NH_3)_6]^{2+}$	0.974	0.964
$[Fe(NCH)_6]^{2+}$	0.934	0.934
$[Fe(PH_3)_6]^{2+}$	0.832	0.878
$[Fe(CO)_{6}]^{2+}$	0.975	0.896
[Fe(CNH)6] ²⁺	0.978	0.946

Table S8. Coupled cluster T1 amplitudes from the calculation with frozen 3s3p orbitals. Values greater than 0.02 are indicative of multireference character.

Complex	HS contribution	LS contribution
[Fe(NH ₃) ₆] ²⁺	0.01414	0.02187
[Fe(NCH)6] ²⁺	0.01656	0.02670
$[Fe(PH_3)_6]^{2+}$	0.02148	0.05037
$[Fe(CO)_{6}]^{2+}$	0.02106	0.03841
[Fe(CNH) ₆] ²⁺	0.01941	0.03853

Frequencies						
0.00	0.00	0.00	0.00	0.00	0.00	
39.24	41.63	70.06	117.92	136.44	151.48	
168.11	186.63	189.27	192.24	197.22	234.53	
263.07	278.06	301.37	310.18	313.64	315.30	
317.46	393.32	394.31	397.69	401.14	405.93	
408.76	461.19	473.83	553.15	553.52	565.95	
566.37	592.24	595.74	782.03	785.01	793.20	
796.39	833.43	835.80	870.40	879.02	879.17	
880.47	881.39	883.80	941.05	956.83	990.50	
996.18	998.61	999.05	1039.32	1045.55	1047.71	
1053.19	1059.71	1060.22	1099.35	1100.65	1116.96	
1119.01	1135.37	1135.68	1137.85	1138.98	1175.74	
1177.05	1177.74	1179.08	1259.59	1260.84	1264.14	
1264.44	1291.35	1292.86	1293.41	1295.25	1311.13	
1311.20	1320.33	1323.62	1369.15	1369.98	1371.92	
1394.24	1395.55	1396.13	1396.70	1399.87	1406.07	
1406.20	1406.82	1409.48	1453.87	1457.57	1462.65	
1463.51	1464.80	1466.36	1482.04	1484.67	1487.40	
1487.72	1494.95	1496.91	1497.03	1497.19	1498.21	
1499.52	1515.13	1515.59	3087.99	3088.13	3088.92	
3089.33	3090.48	3090.98	3119.13	3120.27	3121.60	
3122.16	3126.83	3127.30	3148.90	3149.77	3150.14	
3150.71	3151.42	3152.04	3180.28	3181.15	3183.26	
3183.70	3192.79	3193.05	3523.29	3524.39	3524.72	
3524.81	3525.45	3525.86				

Table S9. CASPT2 vibrational frequencies in cm⁻¹ for HS state of the $[Fe(tacn)_2]^{2+}$ complex computed with the minimal (6*e*,5*o*) active space and the cc-pVDZ basis set on all atoms.

	Frequencies LS						
0.00	0.00	0.00	0.00	0.00	0.00		
94.37	123.40	123.41	184.59	184.75	191.12		
209.15	209.34	223.19	223.21	318.05	322.16		
330.89	330.95	346.13	366.19	366.31	387.56		
387.76	410.50	428.68	428.71	449.97	455.80		
455.91	505.56	508.25	573.94	574.11	609.71		
609.82	615.29	623.69	802.59	802.74	823.50		
823.68	850.36	855.21	883.20	887.81	900.21		
900.30	902.63	902.69	982.29	993.84	1001.13		
1001.22	1003.90	1004.00	1064.41	1065.15	1065.16		
1066.07	1075.67	1075.75	1099.16	1104.79	1110.00		
1116.63	1140.11	1140.30	1147.27	1147.39	1170.03		
1170.14	1173.06	1173.18	1255.38	1255.43	1259.43		
1259.47	1291.52	1291.56	1296.98	1297.03	1304.09		
1304.78	1317.10	1324.29	1368.61	1369.28	1393.05		
1393.16	1393.68	1396.09	1396.21	1401.85	1404.13		
1404.22	1412.23	1412.33	1454.83	1461.52	1461.58		
1461.72	1466.84	1466.98	1486.09	1486.19	1490.50		
1490.63	1501.86	1501.88	1502.38	1503.47	1508.57		
1508.63	1516.63	1517.04	3098.63	3099.12	3099.31		
3099.89	3099.91	3100.55	3123.99	3124.55	3124.79		
3124.90	3129.46	3129.74	3159.86	3160.50	3160.82		
3161.31	3161.38	3161.93	3185.82	3186.24	3186.49		
3186.63	3196.01	3196.22	3517.22	3517.50	3517.61		
3517.97	3518.13	3518.34					

Table S10. CASPT2 vibrational frequencies in cm⁻¹ for LS state of the $[Fe(tacn)_2]^{2+}$ complex computed with the minimal (6*e*,5*o*) active space and the cc-pVDZ basis set on all atoms.