A facile surface alloy-engineering route to enable robust lithium metal anode

Xiaobin Liao^a, Qian Liu^a, Xiaolin Liu^a, Shaohua Zhu^c, Kangning Zhao^{c,*}, Yan Zhao^{a,b,*} ^aState Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, People's Republic of China.

^bThe Institute of Technological Sciences, Wuhan University, Hubei, Wuhan 430072, People's Republic of China.

^cState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

*Corresponding Authors:

E-mail addresses: kangning.zhao@epfl.ch (K. Zhao), yan2000@whut.edu.cn (Y. Zhao)

Figure S1. The two types of exposed Li₃Cu (001) surfaces. The atomic layers in bulk were constrained and only the atoms at top two layers were free to relax. The green atoms are Li, and the blue atoms are Cu.

	Bulk		Surface area Å ²	Eunrel	E _{rel}	½ △E	σ	Esurface(µLi) J/m ²
				-41.56	-41.86	-0.15	24.44	24.22
		001	16.17	-41.56	-41.86	-0.15	24.44	24.22
				-40.41	-40.57	-0.08	19.43	19.24
		100	30.13	-82.43	-82.83	-0.20	43.67	23.22
	-18.91			-82.43	-82.83	-0.20	43.67	23.22
Li ₃ Cu		110	22.12					
				-41.02	-41.26	-0.12	24.74	17.92
				-41.02	-41.26	-0.12	24.74	17.92
				-40.13	-40.19	-0.03	19.62	14.21
		111 48.36	19 26	-76.38	-76.92	-0.27	44.73	14.82
			-75.38	-75.69	-0.15	39.68	13.15	

Table S1. The calculated data of the surface energy of Li_3Cu .

Table S2. The calculated data of the surface energy of Li_3Ga .

	Bulk		Surface area Å ²	E _{unrel}	E _{rel}	½ △E	σ	Esurface(µLi) J/m ²
				-82.03	-82.33	-0.15	145.10	57.81
		001 40.21	40.21	-82.03	-82.33	-0.15	145.10	57.81
				-81.32	-81.46	-0.07	115.11	45.86
		110						
Li ₃ Ga	-38.01		28.44	-82.80	-83.03	-0.11	129.54	72.98
				-82.80	-83.03	-0.11	129.54	72.98
		111 80.43	<u> 20 12</u>	-98.82	-99.31	-0.25	174.63	34.78
			80.43	-116.01	-116.25	-0.12	234.60	46.73

	Bulk		Surface area $Å^2$	Eunrel	E _{rel}	½ △E	σ	Esurface(µLi) J/m ²
		001	37.06	-63.77	-63.79	-0.01	34.18	14.77
Li ₃ Mg	-14.68	100	30.48	-41.45 -47.99 -56.42	-41.68 -48.07 -56.44	-0.12 -0.04 -0.02	23.21 30.91 30.50	12.20 16.25 16.03
		110	52.79	-61.24 -62.80	-61.41 -62.95	-0.08 -0.08	38.92 31.05	11.81 9.42
		111	62.12	-61.31	-61.40	-0.04	35.38	9.12

Table S3. The calculated data of the surface energy of Li_3Mg .

Table S4. The calculated data of the surface energy of Li_3Zn .

	Bulk		Surface area Å ²	Eunrel	E _{rel}	½ △E	σ	Esurface(µLi) J/m ²
Li ₃ Zn		001	32.94	-62.76	-62.81	-0.02	33.70	16.39
		100 26.85	26.85	-46.95	-47.17	-0.11	30.49	18.20
	-14.47			-54.91	-55.60	-0.70	29.72	17.73
		110 46.50	46.50	-59.87	-60.14	-0.13	38.48	13.25
			-62.30	-62.66	-0.18	30.33	10.45	
		111	54.82	-60.33	-60.76	-0.22	34.72	10.15

Figure S2. The graph results of the surface energies of Li₃Cu, Li₃Ga, Li₃Mg and

Figure S3. The optimized Li₃Cu (111) (a), Li₃Ga (111) (b), Li₃Mg (111) (c) and Li₃Zn (111) surface (d). The green atoms are Li, blue atoms are Cu, cyan atoms are Ga, brown atoms are Mg and grey atoms are Zn.

Figure S4. Li atom adsorbed on the pure Li (001) (a), Li₃Cu (111) (b), Li₃Ga (111) (c),
Li₃Mg (111) (d) and Li₃Zn (111) surfaces (e). The green atoms are Li, blue atoms are
Cu, cyan atoms are Ga, brown atoms are Mg and grey atoms are Zn.

Figure S5. The highest adsorption energy for the Li atom adsorbed at the pure Li meal and Li alloy surfaces.

Figure S6. The scatter plot of the surface energy vs. adsorption energy at different

alloy surfaces.

Figure S7. The structures of the optimized Li_n (n = 2 - 20) clusters.

Figure S8. The average binding energy (a), vertical ionization potential (b), chemical hardness (c), and the chemical potential of the Li clusters (d).

Figure S9. The Li₁₆ and Li₁₉ clusters adsorbed at pure Li (001) (a), Li₃Cu (111) (b),

Li₃Ga (111) (c), Li₃Mg (111) (d) and Li₃Zn (111) surfaces (e). The green atoms are Li,

blue atoms are Cu, cyan atoms are Ga, brown atoms are Mg and grey atoms are Zn.

Figure S10. The configuration and electron localization functional of the pure Li (001)

Figure S11. The ELF and corresponding sliced 2D displayed ELF of the Li₃Cu (111)

(a), Li₃Ga (111) (b), Li₃Mg (111) (c) and Li₃Zn (111) surfaces (d). The green atoms are Li, blue atoms are Cu, cyan atoms are Ga, brown atoms are Mg and grey atoms

Figure S13. The molecular dynamics at 360 K for simulating the interaction between

Figure S14. The optimized structure of Li (001) with adsorbed electrolyte molecules(a). The corresponding 2D displayed ELF and charge density difference (b). The green atoms are Li, pink atoms are H, the saddle-brown atoms are C, red atoms are O, silver atoms are F and plum atoms are P.

Figure S15. The optimized structure of alloy surfaces with adsorbed electrolyte molecules: Li₃Cu (111) (a), Li₃Ga (111) (b), Li₃Mg (111) (c) and Li₃Zn (111) (d). The green atoms are Li, blue atoms are Cu, cyan atoms are Ga, brown atoms are Mg and grey atoms are Zn, pink atoms are H, the saddle-brown atoms are C, red atoms are O, silver atoms are F and plum atoms are P.

Table S5. The transferred charge on the oxygen atoms in EC within the alloy systems.

	Ot	O _{b1}	O _{b2}
Li ₃ Cu	1.22	1.01	1.04
Li ₃ Ga	1.24	1.02	1.01
Li ₃ Mg	1.21	1.01	1.07
Li ₃ Zn	1.21	1.02	1.07

Figure S16. The density of states of the Li s orbital in bulk (a) and Li (001) surface (b).

EC	Charge	DEC	Charge
Н	0.920388	Н	0.960047
Н	0.888458	Н	0.939755
Н	0.819047	Н	0.9427
Н	0.904753	Н	0.947391
С	1.882382	Н	0.978973
С	3.680304	Н	0.946888
С	3.669961	Н	0.95815
0	7.327072	Н	0.95098
0	7.039065	Н	0.957928
0	7.044682	Н	0.963881
		С	3.594062
		С	1.932769
		С	3.599117
		С	4.084666
		С	4.054022
		0	7.051271
		0	7.121027
		0	7.056847

Table S6. The Bader charge of EC and DEC molecules on Li (001) surface.

EC	Charge	DEC	Charge
Н	0.914277	Н	0.9437
Н	0.921732	Н	0.944107
Н	0.845939	Н	0.894089
Н	0.879369	Н	0.942829
С	1.894836	Н	0.976009
С	3.672024	Н	0.949917
С	3.645194	Н	0.971908
0	7.226394	Н	0.940665
0	7.012683	Н	0.954936
0	7.045591	Н	0.963356
		С	3.581941
		С	1.901887
		С	3.655754
		С	4.046629
		С	4.07545
		0	7.054233
		0	7.157097
		0	7.061957

Table S8. The Bader charge of EC and DEC molecules on Li_3Ga surface.

EC	Charge	DEC	Charge
Н	0.943568	Н	0.927329
Н	0.93731	Н	0.911539
Н	0.882854	Н	0.924173
Н	0.884647	Н	0.940091
С	1.862994	Н	0.943957
С	3.607073	Н	0.941405
С	3.623878	Н	0.958097
Ο	7.245723	Н	0.954654
Ο	7.020908	Н	0.960661
Ο	7.016524	Н	0.996574
		С	3.636828
		С	1.902125
		С	3.615695
		С	4.100996
		С	4.098425
		Ο	7.053707
		Ο	7.15198
		0	7.052654

E	EC	Charge	DEC	Charge
I	Н	0.894442	Н	0.929691
I	Н	0.946112	Н	0.904868
I	Н	0.877274	Н	0.897708
ļ	Н	0.876744	Н	0.937379
(С	1.885191	Н	0.964254
(С	3.662103	Н	0.952992
(С	3.615346	Н	0.937276
(0	7.211725	Н	0.939578
(0	7.014666	Н	0.967875
(0	7.069138	Н	0.970575
			С	3.648618
			С	1.888337
			С	3.632496
			С	4.08014
			С	4.095203
			Ο	7.054267
			Ο	7.167811
			0	7.056317

Table S10. The Bader charge of EC and DEC molecules on Li_3Zn surface.

EC	Charge	DEC	Charge
Н	0.901867	Н	0.930487
Н	0.903834	Н	0.910724
Н	0.883049	Н	0.890931
Н	0.87283	Н	0.948792
С	1.879269	Н	0.959497
С	3.655194	Н	0.952499
С	3.669604	Н	0.975432
0	7.208084	Н	0.940626
0	7.020287	Н	0.955036
Ο	7.072674	Н	0.986589
		С	3.674296
		С	1.889685
		С	3.634682
		С	4.02537
		С	4.1209
		0	7.039799
		0	7.162742
		0	7.068001