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Chandler Greenwell,† Jan Řezáč,‡ and Gregory J. O. Beran∗,†

†Department of Chemistry, University of California, Riverside, California 92521 USA

‡Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10

Prague, Czech Republic

E-mail: gregory.beran@ucr.edu

Contents

S1 Bayesian Parameter Search Algorithm 2

S2 Comparing the Tang-Toennies damping function in MP2D and SCS-MP2D 4

S3 Percent Weighted Root Mean Square Errors for Benchmark Data Sets 5

S4 Full Anthracene Photodimerization Potential Energy Curve 6

The SI provides additional insight on (1) an alternative parameter search where a Bayesian
search algorithm with Gaussian processes was explored, (2) how the damping function
changes from MP2D to SCS-MP2D, (3) a table displaying the percent relative root mean
square errors for each method on each benchmark data set, and (4) the full anthracene
photodimer potential energy curve.
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S1 Bayesian Parameter Search Algorithm

Bayesian optimization is intended to find optimal parameters (x1, ..., xn) for an unknown
function f(x1, ... xn). For example, Bayesian optimization is useful for finding optimal hy-
perparameters in machine learning models, especially when the model is expensive to train.
If analytic gradients of the objective function are available, then Bayesian optimization will
likely be less efficient than a gradient-based optimizer. For that reason, the evolutionary
algorithm with gradient-based minimization was employed for the primary parameter search
in this work. However, given the rough SCS-MP2D parameter landscape with many lo-
cal minima, Bayesian optimization was employed as a secondary check for discovering any
potential alternate parameter sets that might have been missed in the evolutionary search.

A Bayesian algorithm with Gaussian processes was used in this work as a probe of
the likely parameter space, and as a convergence test for the genetic/gradient optimization
algorithm. The Bayesian optimizer was seeded with top performing parameter sets from the
evolutionary algorithm/gradient-based optimizations. The progression of the optimizer is
shown in Figure S1. Initially the Bayesian algorithm probes the potential energy landscape
of the optimization problem with the seed points, then a predefined number of random
points are sampled and used to construct a probability model of the objective function for the
parameter space. After the random points are sampled, the most promising points according
to the probability model are sampled. The probability model is continuously updated as new
points are sampled. As exemplified by Figure S2, none of the Bayesian search runs identified
any parameter sets that were better than what the evolutionary algorithm searches found.
This result increases the confidence that an optimal or near-optimal set of parameters was
discovered for the chosen training data.
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Figure S1: Example of a Bayesian parameters search: (1) the optimizer is seeded with good
parameter sets from the genetic/gradient optimizer, (2) 50 random points are sampled within
a predefined sample space, and (3) new points are sampled based on a function constructed
from the seeded and random guess points.
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Figure S2: Zooming in on the search space shows how the Bayesian optimizer finds new
parameter sets that perform well, but do not match the performance of the best parameter
sets from the genetic/gradient optimizer.
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S2 Comparing the Tang-Toennies damping function in

MP2D and SCS-MP2D

Here, the Tang-Toennies damping function is plotted as a function of the interatomic distance
between three different atom pairs (C-C, C-H, and H-H) for our original MP2D method and
SCS-MP2D. Compared to MP2D, SCS-MP2D allows the dispersion term to contribute more
at shorter ranges. It is possible that this is in response to the reduced scaling of the opposite-
spin Cos and same-spin Css coefficients in SCS-MP2D. Their respective values of 0.8263 and
0.9004 are both less than 1. Unlike the original SCS-MP2 and SCS-MI-MP2 methods, SCS-
MP2D has both spin components reduced from the canonical value of 1. It is also worth
observing that the Cos and Css values are very similar. This suggests it could be possible to
develop an SCS-MP2D type method with a single scaling coefficient for the MP2 correlation
energy.
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Figure S3: Examination of the Tang-Toennies damping function f6 as a function of the
interatomic distance, R, for three atom-type interactions.

4



S3 Percent Weighted Root Mean Square Errors for

Benchmark Data Sets

As a companion to Table 2 in the main paper, Table S1 summarizes the relative root-mean-
square errors for the data sets

Table S1: Relative root mean square error (%) calculated by dividing the RMSE by the mean
absolute value of the reference energies and multiplying by 100. The asterisk (?) indicates
data sets that were used to fit SCS-MP2D.

DSD- revDSD-
Data Set MP2 MP2D SCS-MP2D BLYP-D3(BJ) PBEP86-D3(BJ) ωB97X-V ωB97M-V

CBS CBS CBS def2-QZVP def2-QZVP def2-QZVP aQZ

Intermolecular Interactions
S66x8 16.71 3.92 3.10? 4.51 4.08 5.32 2.73

3B-69 Dimers 8.08 5.08 4.35 4.70 4.57 4.85 4.07
SSI 4.31 1.87 2.02 1.80 1.45 2.40 1.80

HBC6 2.96 2.46 2.36 3.44 1.58 2.98 2.20
NBC10 98.56 18.62 8.71 20.97 4.43 21.87 10.60

Charge Transfer 19.61 4.06 2.46 5.52 4.48 4.12 3.26
HB375 7.69 2.86 2.26 2.50 2.37 3.09 3.38
IHB100 2.36 2.44 1.77 2.19 1.38 1.93 1.88

Conformational Energies
SCONF 6.72 7.65 3.98? 5.74 2.93 4.57 5.15
ACONF 6.00 3.60 6.32 4.53 12.84 3.27 4.53

Amino20x4 10.66 6.89 7.30 6.66 6.82 9.86 9.84
MCONF 20.52 8.13 6.62 11.15 3.92 5.43 7.93
PCONF21 68.45 25.90 19.36 29.39 14.02 21.58 42.81

Reaction Energies
DARC 12.22 5.84 4.35? 3.37 1.96 13.49 3.01
ISO34 11.53 9.76 6.62 7.26 3.34 10.68 5.66
ISOL24 16.74 12.64 10.07 12.19 7.79 18.92 10.87
IDISP 49.40 9.97 9.06 11.27 4.70 27.28 19.87
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S4 Full Anthracene Photodimerization Potential En-

ergy Curve

This plot shows the full potential energy curve for the anthracene photodimerization. As
stated in the main paper, the restricted, single-reference electronic structure models are
probably not reliable in the intermediate regime between the two wells due to the substantial
static correlation associated with forming/breaking two C-C single bonds.
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Figure S4: 1-D potential energy scan following the dissociation of an anthracene photodimer
to a separated π-stacked dimer
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