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In Secs. I and IT below we compute the transition dipole moments of valence photoionization.

PARTIAL TRANSITION DIPOLE MOMENTS OF PHOTOIONIZATION
According to eq. (5) the HOMO 50 orbital of CO

¢50 Z ¢n 50’ - n) (Sl)

n=0,C

is a coherent superposition of the the wave functions of the oxygen ¥o 50 = ¥0.5,(r — Ro) and carbon ¢¢c 5, =
Y50 (r—Re) atoms. Here r and R, are the radius vector of the electron and of the n-th atom. We need to compute
the transition dipole of the 50 — 1 photoionization

Z /dl‘ Vi (1)1 50 ( Z /d”f’k —Ry)Yn50(r — Ry). (52)
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Now we are in stage to transform the continuum wave function ¢ (r) to the same origin as the atomic wave function
Y50 (r —Ry,). First, let us do this using the plane wave approximation

~ 1 ker 1 k'R, k- (r—R,,)
Yi(r) & @’ = (@nprt e ; (S3)

which is quite good approximation for X-ray photoionization of the valence shell. In fact, the plane-wave approximation
can be strongly improved [1] by replacing the plane wave (27)~3/2 exp(ik - (r — R,,)) by solution gofcn) (r—R,,) of the

Schrédinger equations in the vicinity of the n-th atom
di(r) = P (e — Ry, (84)

We assumed in eq.(S2) that (x|t 50) ~ 0. This is because (x|t 50) ~ e~ KRn <<p£n) (r —R,)|[¢ns0(r —R,) =~ 0.
Substitution of the wave functions (S1) and (S4) in eq. (S2) results in the following expression for the transition
dipole moment of the valence ionization

S odly, diy = e kReg), (S5)
n=0,C
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where
d(n) = /drn@in)*(rn)rnwn,Ba(rn)v rn, =r— Rn’ (86)

is the partial transition dipole moment of the ejection of the photoelectron from the 5o orbital (¢, 5, (r)) in the vicinity
of the n-th atom. Let us proceed further and write R, in terms of internuclear radius vector R = Rp — R¢ [1]

RO = aoR, RC = —OécR. (87)
This allows to get
dgg) _ efzaok-Rd(O), dgg) _ elack'Rd(C)' (88)

The opposite signs in these exponents are very important for the Cohen-Fano interference because (dgg))*dgg) ox etk R

(see Sec. III).

CALCULATION OF d™

In this section we show details of derivation of the eq.(23) for d™ and clarify the meaning of the coefficients A,,,
B,, and C,,. Let us choose the molecular frame with the molecular axis along z-axis

Rz 6=<ZkR). (S9)
Using the expansions of the wave functions ,,(r) and cp( )( )

wn 5a< ) = an 50Rg”>< )YOO + bn 5UR§“>< >Y1z(f) (S10)
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over spherical harmonics Y},, (') we write d™ (S6)

A" = ap50 Y Vi (K) PG (Yoo #Yim) + buso . Vit () PG (Vi []Yim),
Im Im
P = /drr3x;§7z)*(r)R(L")(r), L=0,1. (S11)
0

in terms of the radial integrals Pgﬁ and the spherical functions Ylm(fc) It is convenient to use the expansion of T over
the real spherical functions and the relationship between real (Y1,(f), ¢ = z,y, 2) and complex (Y1,,(t), m = 0, £1)

spherical function [2]
. [ 4T .
rpey = 3 Z Yiu(t)ey,

w=2,y,2 p=,y,z
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Here e, is the unit vector along the p-th axis. Putting together this, the expression for the matrix element [2]

>

Yig = Y. =Y. (S12)

<}/iz‘ylm’ ‘lem> - 5m’,*m(_1)m

1 4 —m?
i di0+1\ —3 21 (S13)
and

k, =sinfcosy, k,=sinfsing, k,=cosf, R=e, (S14)



we obtain the following expression for the transition dipole moment of our interest

1 1 /3 ~ =~
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A = s Pl o P 2 R (515
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These components of d(™ and eq.(S14) allows to write the transition dipole moment d(™ = d,(fl)eﬂ in the
invariant form valid in any frame S
am = nde pg  Onse (po) _ pyg | Bnse \/gPQ(;”(IE ‘R)k. (S16)
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The obtained equation explains the expression (23) for d™ and clarifies the meaning of the coefficients A,,, B, and
Cy, in eq.(23) of the main text

Gn, 50 bn,Sa n 3 n
An = \/E‘Pl(g)’ B, = 2\/3?(P(§?)_P2(1))7 C’n:b"ﬁav EPZ(I) (817)

COHEN-FANO INTERFERENCE

In the present section we explain the partition of the ionization cross-section (4) in three contributions and explain
why the interference term o;,: (5) is negligibly small in X-ray ionization of valence electrons. Due to the coherence
of the oxygen and carbon contributions in the 50 molecular orbital, one can expect two-center interference of the
Yo — Yk and Yo — Yy ionization channels. Let as compute the 5o ionization cross section using eq. (S5)

2

1
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Here (but not in the main text) we neglected rather weak dependence on R of the direct terms ‘d(”) ‘2 in comparison
with the strong R dependence of the interference factor exp(zk - R). Thus we get egs. (4) and (5), where
sinkR
kR
One can see that the Cohen-Fano (CF) interference term oy, [3] is comparable with the direct terms o,, when the
photon frequency is close to the ionization threshold, where sin(kR)/kR = 1 because here the momentum % is small.

However, 0;,; < (kR)~! is strongly suppressed in the valence X-ray ionization due to the large momentum of the
photoelectron and because of random orientation of free molecules.

2
™" i o 2Re (d(o)*d(c)> (S19)
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POLARIZATION TENSOR

To give more insight in the polarization dependence of the probe X-ray absorption (see egs. (29) and (30) of the
main text) here we provide in-deep physical analysis, starting from eq.(24) of the main text:

QJo( ) (d(n)d21 /dkz Z 62(6‘11_6‘11)7— (SQO)
Mo Jy My, J|M]
x (JoMo, 0| "X RJI MY (T M| |(e1 - k)2 (eg - R)?[JL M) (Jy My e KR Jy My, 0).



Apparently, o0;,(7) depends only on the angle # between the polarization vectors e; and ez. The reason for this is
the random molecular orientation in rotational states Jy (the formal reason for this is integration over R in matrix
elements and summations over all projections of angular momentum M) and integration over all directions of ejection
of the photoelectron. This means that o, (7) exactly coincides with g, (7) averaged over all orientations of the pair
(e1, e2) with fixed angle 0 between them. Following Ref. [4] let us perform this orientational averaging of the product
of the cartesian coordinates of the polarization vectors e; and ey (see Sec. IV A)

1 3cos? 0 —1) (3(6;16: + 610
CriC1j el = 5 |:($ij5kl + ( 5 ) < (O ]12 k) 6ij5kl>:| . (S21)

Here overline denotes the averaging over orientations of the pair (e1, e2) with fixed angle § = Z(eq,e2). As we will
see below, the anisotropic term (o (3cos?# — 1) in the polarization tensor (S21) is the reason for the polarization
dependence of the probe X-ray absorption (see egs. (29) and (30) of the main text). Eq. (S21) results in the following
expression [4, 5]

1

(e1-k)2(ey-R)2 = 5 [ + 5(3cos 0 —1)(3(k-R)? — 1)} : (S22)

The replacement (e; - k)2(ey - R)? in eq. (S20) by (e; - k)2(es - R)? gives the following expression for
— 47 3cos 0 — -
_ _ 2 a(n) 2 z(e ;I —€g, )T
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which is the sum of the isotropic time-independent and anisotropic time-dependent o< (3cos®# — 1) contributions.
Here Py(z) = (322 — 1)/2 is the Legendre polynomial of order 2. This expression explains the structure of the final
eq. (30) of the article. One can show that this equation finally results in egs.(29) and (30) of the main text. We
would like to point out that the polarization dependence of the probe absorption (egs.(29) and (30) of the main text)

is nothing special. The same polarization tensor (egs. (S22) and (S21)) describes the polarization properties of other
resonant two-photon processes, for example resonant inelastic X-ray scattering by free molecules [4, 5].

Derivation of eq.(S21)
In general case, the polarization tensor ey;e1;€ar€2; of rang 4 can be constructed as linear combination of three
possible combinations of the products of two Kronecker deltas d;;05
€1:€1;€2k62) = Adijk + B + Cdydj. (S24)
To find the unkown coefficients A, B, and C we should use the following special sums

1=7, k=1: Zelieliegkegk =1=9A+ 3B+ 3C,
L= 261162161]6% = (e1 . 62)2 =34 + 9B + 30, (825)
L= l, ] =k: Z €1i€2;€1kE2L = (e1 . 32)2 =34 + 3B+ 9C.

Solution of these equations

2 —cos? 0 3cos?f —1
. B=(C=2-"-"~_~ 526
15 7 30 (526)
results in eq.(S21). It is interesting to apply obtained result to the special case of the same polarization vectors
e; = ey = e. Since now cosf =1 and A= B = C = 1/15 we get well known result [6]

A:

1
€;€jepe; = 175(5ij6kl + 51‘k5jl + 5il5jk)- (827)



DETAILS OF THE PROBE SIGNAL CALCULATIONS

In this section we derive egs. (10) and (18) of the main text. Substitution of the solution (9) in expression (8) for
the probability of absorption of the second pulse (see main text) results in the following expression

t
Alrit) =2 37 Re[ [ dtae™ (ol G ta) A)e TN (Gt = ) g e B
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This equation is too cumbersome. We wish to rewrite it in terms of the evolution operators e=*17 and e~*/27 which
makes expression for oy (7,t) not only significantly simpler but also puts forward the dynamics of the nuclear wave
packet between the pulses. Using condition of completeness

STm)Aml =1, > Am) ApePmt = et (S29)
Am Am

we eliminate the sum over the quantum states A1, Ay, \] in eq. (S28) and obtain the expression for oy (7,t) in compact
operator form (see eq. (10) in the main text).

Let us now perform integration over time for the short non-overlapping pump and probe pulses using egs. (12) and
(16) of the main text. Taking into account that Gio(t) = &£1(t)(e; - dgg))/Q and Go1(t) = &E2(t)(ez - da1)/2, one can
rewrite eq. (16) as

1 n)\ _+HyT —1HoT 1HoT —1Hy 7T n
ox(r) = 5e Re] (al(en - 5N (e - diz)e e (e - dyy)e 7 (e - dfE) o)
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We now turn to the calculation of the integrals in this equation. Assuming the Gaussian temporal envelops (17) for
the pump and probe pulses the integrals in eq. (S30) can be easily computed

7 2
| [ asae ] =g petenm, (s31)
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where

1 o0
U(Q2, 1) = Tdm/dte_tz/QTfe“ﬁ(Qﬁ’F)t, (S32)
0

is the complex Voigt function and ¢4 = (t4#;)/v/2. Substitution of the egs. (S31) in eq. (S30) results in the expression

_&8EL oy —(iray?
ox(1) = 5 € e D(02,,T) (S33)
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Here ®(Q5,T) = Re ¥(22,T) (see eq. (19) of the main text). By integrating oy (7) over the photoelectron momentum
k

o(r) = 2/(2(2{)301((7'), (S34)

one obtains the absorption cross section of the probe X-ray pulse (eq. (18) of the main text). In agreement with the
intuition the dynamics of the nuclear wave packet is fully defined by the evolution e *17 in the pumped state in
the case of short probe pulse. The formal reason for this is that in eq. (S30) e~ *#27¢!2™ = 1 while the physical
explanation is that the evolution in the final state does not affect the studied process due to short X-ray pulses (see
eq. (15) and related discussion in the main text).

SPHERICAL FUNCTIONS AND CLEBSCH-GORDAN COEFFICIENTS

Here we collect some important equations of the quantum theory of angular momentum [2] used in the main text.
To get the final expression (28) for ¢°(7) we use the sum rule for the product of three Clebsch-Gordan coefficients [2]

(S35)

Z CliMy oTiM JiMy (—1)Jo it (2J1 + 1)V2J, + 1Cg_‘1m J1Joj
v JoMpjm Jg]\/fo_]lm J1 M120 2.71 T 1 Fm20 ]12J{ .

Here we use the conventional notations for Clebsch-Gordan coefficients and 6j-symbols [2]. Let us write down few
equations [2] which are needed for the derivation performed in Sec. 2.3.2 of the main text:

N A 1 47 mim .
(e2-R)(ez-R) =2+ /— > egrer=Ciny,, Yau(R),
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Using the Rayleigh expansion of a plane wave (eq. (25)) we get

(Jy My, 7 |e” <R ]Jo Mo, 0) 747TZ Y, () (Jy My [Yn (R)] Jo Mo) (v1 |5 (e R)[0)
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