Supporting Information

The Effect of Dilution on Induced Free Charge Density Gradients in Room Temperature Ionic Liquids

Md. Iqbal Hossain and G. J. Blanchard^{*} Michigan State University Department of Chemistry East Lansing, MI 48824 USA

^{*} Author to whom correspondence should be addressed: email: blanchard@chemistry.msu.edu Tel: +1 517 353 1105.

Example of experimental data for CV^+ in BMIM⁺BF₄⁻ (X=0.603) in ACN (X=0.397). Top panel show raw experimental $I_{\parallel}(t)$ and $I_{\perp}(t)$ data. Bottom panel shows R(t) calculated using Eq. S1 and the fit of the function S2 to the experimental data.

$$R(t) = \frac{I_{\rm P}(t) - I_{\perp}(t)}{I_{\rm P}(t) + 2I_{\perp}(t)}$$
[S1]

[S2]

Figure S1. Anisotropy decay time constants of CV^+ in BMIM⁺BF₄⁻ as a function of distance from the ITO support and as a function of dilution with ACN as indicated in the legend. Each time constant is the result of the average of 65,536 (256 x 256 array) $I_{\parallel}(t)$ and $I_{\perp}(t)$ time-resolved data sets. The resulting data are processed according to Eq. 1 and the resulting R(t) function is fitted to a single exponential decay function. The error bars are $\pm 1\sigma$ uncertainties for fits of R(t) to a single exponential decay function. Replicate measurements were performed at least three times.

Figure S2. Anisotropy decay time constants of CV^+ in BMIM⁺BF₄⁻ as a function of distance from the ITO support and as a function of dilution with MeOH as indicated in the legend. Each time constant is the result of the average of 65,536 (256 x 256 array) I_{||}(t) and I_⊥(t) time-resolved data sets. The resulting data are processed according to Eq. 1 and the resulting R(t) function is fitted to a single exponential decay function. The error bars are ±1 σ uncertainties for fits of R(t) to a single exponential decay function. Replicate measurements were performed at least three times.

Figure S3. Anisotropy decay time constants of CV^+ in BMIM⁺TFSI⁻ as a function of distance from the ITO support and as a function of dilution with ACN as indicated in the legend. Each time constant is the result of the average of 65,536 (256 x 256 array) I_{||}(t) and I_⊥(t) time-resolved data sets. The resulting data are processed according to Eq. 1 and the resulting R(t) function is fitted to a single exponential decay function. The error bars are ±1 σ uncertainties for fits of R(t) to a single exponential decay function. Replicate measurements were performed at least three times.

Figure S4. Anisotropy decay time constants of CV^+ in BMIM⁺TFSI⁻ as a function of distance from the ITO support and as a function of dilution with MeOH as indicated in the legend. Each time constant is the result of the average of 65,536 (256 x 256 array) $I_{\parallel}(t)$ and $I_{\perp}(t)$ time-resolved data sets. The resulting data are processed according to Eq. 1 and the resulting R(t) function is fitted to a single exponential decay function. The error bars are $\pm 1\sigma$ uncertainties for fits of R(t) to a single exponential decay function. Replicate measurements were performed at least three times.

HMIM⁺TFSI⁻ diluted with ACN

Figure S5. Anisotropy decay time constants of CV^+ in HMIM⁺TFSI⁻ as a function of distance from the ITO support and as a function of dilution with ACN as indicated in the legend. Each time constant is the result of the average of 65,536 (256 x 256 array) I_{||}(t) and I_⊥(t) time-resolved data sets. The resulting data are processed according to Eq. 1 and the resulting R(t) function is fitted to a single exponential decay function. The error bars are ±1 σ uncertainties for fits of R(t) to a single exponential decay function. Replicate measurements were performed at least three times.

HMIM⁺TFSI⁻ diluted with MeOH

Figure S6. Anisotropy decay time constants of CV^+ in HMIM⁺TFSI⁻ as a function of distance from the ITO support and as a function of dilution with MeOH as indicated in the legend. Each time constant is the result of the average of 65,536 (256 x 256 array) I_{||}(t) and I_⊥(t) time-resolved data sets. The resulting data are processed according to Eq. 1 and the resulting R(t) function is fitted to a single exponential decay function. The error bars are ±1 σ uncertainties for fits of R(t) to a single exponential decay function. Replicate measurements were performed at least three times.