Supplementary Information

On relaxation and vibrational dynamics in the thermodynamic states of a chiral smectogenic glass-former

Anna Drzewicz, *^a Małgorzata Jasiurkowska-Delaporte,^a Ewa Juszyńska-Gałązka,^{a,b} Aleksandra Deptuch,^a Mirosław Gałązka,^a Wojciech Zając,^a and Witold Drzewiński^c

^aInstitute of Nuclear Physics Polish Academy of Sciences, PL-31342 Kraków, Poland ^bOsaka University, 565-0871 Osaka, Japan

^cInstitute of Chemistry, Military University of Technology, PL-00908 Warszawa, Poland

Fig. S1. The relative conformational energy ΔE and the dipole moment μ with respect to the optimized structure of 3F5HPhH7 vs. the torsional angles: a) θ_1 , b) θ_2 , c) θ_3 , d) θ_4 and e) θ_5 obtained by DFT calculations.

Fig. S2. Measured (upper plot) and calculated (lower plot) infrared spectra of 3F5HPhH7. The inset presents the determination of a scaling factor.

$v_{experimental} \left[cm^{-1} \right]$	$v_{theoretical} \left[cm^{-1} ight]$	Assignment
776	785	ρ (C-H)
1024	1030	$v(C-C-O)_{sym}$
1119	1128	$\rho(\text{C-H})$
1165-1195	1170-1192	$v(C-O-C)_{sym}$
1207-1280	1203-1282	$v(C-O-C)_{asym}$
1510-1290	1509-1287	γ (C-H) + ω (C-H) + β (C-H) _{sym}
1607	1601	v(C=O)
1704	1698	$v(C=O)_{chiral c.}$
1730	1724	$v(C=O)_{core}$
2853	2864	$\nu(CH_2)_{sym}$
2872	2883	$\nu(CH_3)_{sym}$
2928	2935	$v(CH_2)_{asym}$
2953	2963	$v(CH_3)_{asym}$

Fig. S3. Assignment of the most representative vibration modes observed on experimental $(\nu_{experimental})$ and theoretical $(\nu_{theoretical})$ FTIR spectra. Abbreviations: ρ-rocking, ν-stretching, γ- bending out-of-plane, ω-wagging, β-bending in-plane, asym-asymmetric, sym-symmetric.

Fig. S4. Infrared spectra obtained upon heating after fast cooling from 173 to 400 K in the wavenumber ν regions of: a) 3150-2750 cm⁻¹; b) 1800-1580 cm⁻¹, c) 1550-1050 cm⁻¹, d) 1000-680 cm⁻¹.

Fig. S5. Infrared spectra obtained upon heating after slow cooling from 173 to 400 K in the wavenumber ν regions of: a) 3150-2750 cm⁻¹; b) 1800-1580 cm⁻¹, c) 1550-1050 cm⁻¹, d) 1000-680 cm⁻¹.