Supplementary Information - Resolving Competing Conical Intersection Pathways: Time-Resolved X-ray Absorption Spectroscopy of trans-1,3-Butadiene

Issaka Seidu,¹ Simon P. Neville,¹ Ryan J. MacDonell,² and Michael S. Schuurman^{1,3}

¹National Research Council of Canada,
100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
²University of Sydney, Sydney, Australia
³Department of Chemistry and Biomolecular Sciences,
University of Ottawa, 10 Marie Curie,
Ottawa, Ontario, K1N 6N5, Canada

FIG. S1: Calculated XAS at CVS-DFT/MRCI/aug-cc-pVDZ level of theory for S_0 state at the FC compared to the experimental EELS spectrum[1]. The calculated spectrum is convoluted with a FWHM = 1.0 eV and shifted by 3.5 eV to higher energy to facilitate comparison to experimental spectrum.

TABLE S1: Transoid NTOs of the ground-state and excited-state XAS.

$\mathrm{Peak/eV}$	State	Weight	Hole	Particle	$\mathrm{Peak}/\mathrm{eV}$	State	Weight	Hole	Particle
				p	ol.				
A (283.0) B (284.9)	$1s_{C_1}\pi^*$ $1s_{C_4}\pi^*$	0.86 0.72	^ڡ ۜٷ ^ۿ ٷؚ؞	0 6 0 4 0 6	C (284.5) D (287.0)	$1s_{C_2}\pi^*$ $1s_{C_3}\pi^*$ $1s_{C_1}Ryd$	0.88 0.83 0.81	ڡۜۅڡؖ؋ ڡۅڡ؋	6000 0000 00
				ra	ıd.				
A' (282.0)	$1s_{C_1}\pi^*$	0.48	ڡٚۅڡؙۅؚ		C' (283.5)	$1s_{C_4}\pi^*$	0.36	ڡؘٷڡ	4
B'(283.0)	$1s_{C_2}\pi^*$	0.44			D' (284.0)	$1s_{C_2}\pi^*$	0.37	ૢૡ૾ૡ૾ ૡ૾ૼ૾	
						$1s_{\mathrm{C}_3}\pi^*$	0.27	e e e e e e e e e e e e e e e e e e e	
						$1s_{\mathrm{C}_4}\pi^*$	0.25	ૢૡ૾ૡ ૢૡ૽ૼ	e li e

TABLE S2: Tw-Py NTOs of the ground-state and excited-state XAS.

FIG. S2: Simulated parallel polarization TRXAS spectrum employing the results of AIMS dynamics simulations and CVS-DFT/MRCI X-ray absorption cross-sections. An isotropic axis distribution was assumed.

FIG. S3: Simulated perpendicular polarization TRXAS spectrum employing the results of AIMS dynamics simulations and CVS-DFT/MRCI X-ray absorption cross-sections. An isotropic axis distribution was assumed.

TABLE S3: MR-CIS optimized geometry of the terminal Tw-Py MECI.

C 1.841822 0.081208 0.057792
C 0.689252 -0.634435 -0.026686
C -0.601894 0.013296 -0.099864
C -1.816004 -0.716548 0.021817
H 2.804940 -0.398401 0.083936
H 1.828613 1.158278 0.096778
H 0.686535 -1.710894 -0.041153
H -0.526661 1.104012 -0.129623
H -2.674612 -0.198314 -0.418121
H -1.816589 -0.006067 0.962993

TABLE S4: MR-CIS optimized geometry of the medial Tw-Py (mTw-Py) MECI.

С	1.363654	-1.476754	1.033232
С	0.534891	-0.949371	0.036100
С	-0.670059	-0.158282	0.076533
С	-1.952813	-0.537649	-0.176377
Η	2.387907	-1.747905	0.815252
Η	1.012393	-1.807281	2.008700
Η	0.204967	-2.070707	0.266985
Η	-0.474465	0.895795	0.220505
Η	-2.217817	-1.566880	-0.361516
Η	-2.737362	0.195240	-0.243732

TABLE S5: MR-CIS optimized geometry of the Transoid MECI.

C -1.6964209992 0.0784200000 -0.3501989999
C 1.6837099992 -0.1305659999 -0.2390789999
C -0.4545049998 -0.4328799998 0.2369249999
C 0.5936899998 0.4793759998 0.5337419997
H -1.6246319993 0.7433189997 -1.2007419994
H 2.0114239991 -1.1354329995 0.0052020000
H -2.5595129988 0.2052749999 0.2976069999
H 1.9171149992 0.2301169999 -1.2359359995
H -0.2929549998 -1.4913829993 0.4101809998
H 0.3987159998 1.5435609993 0.4642279998

TABLE S6: Amplitude-weighted average polarized nuclear structure.

$C \ -1.74157096 \ \ 0.29181917 \ \ 0.03320491$
C -0.59423943 -0.41124976 0.05067867
C 0.65180151 0.27447095 0.12570390
C $1.75790994 - 0.27729612 - 0.03407427$
H -1.90570291 0.05433743 -0.93474674
$\rm H\ -2.40665996\ 0.11383504\ 0.51013051$
H -0.42502721 -1.47340208 -0.13745125
H 0.52785253 1.31803074 0.23989687
H 2.58588754 0.22764448 0.04246069
Н 1.78407045 -1.29318991 -0.21697182

TABLE S7: Amplitude-weighted average radicaloid nuclear structure.

C 1.37910228 -0.53731288 0.97351603 C 0.40371732 -0.43791040 -0.14218166 C -0.16702140 0.75629531 -0.50559170 C -1.56735250 0.27035629 -0.42560908 H 2.29933349 -0.49777234 0.81387909 H 1.21559161 -0.49793588 1.82447301 H 0.20243305 -1.29936522 -0.70451660 H 0.10246264 1.68714073 -0.17654197 H -1.93632648 -0.43172744 -1.06541448 H -2.09593225 0.49126615 0.38434477

FIG. S4: (a) and (b) Distribution of the S_1/S_0 energy gaps for the radicaloid and polarized geometries, respectively. Population transfer as a function of the S_1/S_0 energy gap for the radicaloid (c) and polarized (d) geometries.

[1] R. McLaren, S. A. C. Clark, I. Ishii, and A. P. Hitchcock, Phys. Rev. A 36, 1683 (1987).