Supporting Information for

Monolayers gadolinium halides GdX_2 (X = F, Cl, Br): intrinsic ferrovalley

materials with spontaneous spin and valley polarizations

Kang Sheng, Hong-Kuan Yuan, and Zhi-Yong Wang*

School of Physical Science and Technology, Southwest University, Chongqing 400715, China

^{*} Corresponding author: zywang@swu.edu.cn (Z.-Y. Wang)

Figure S1: Comparison of the band structures of MLs GdX_2 obtained by means of the PBE+U and Wannier methods in the presence of the SOC effect.

Monolayer	C_{11}	<i>C</i> ₁₂	<i>C</i> ₂₂	C_{44}
$\overline{\text{GdF}_2}$	70.55	18.64	70.55	26.07
GdCl ₂	46.07	14.20	46.07	15.93
GdBr ₂	40.90	12.56	40.90	14.17

Table S1: Calculated Elastic Constants in N/m for MLs GdX_2 .

Figure S2: Top and side views of the ELF for MLs (a) $GdCl_2$ and (b) $GdBr_2$. The values of 1.0 and 0.0 indicate the electron completely localized and vanishing regions, respectively.

Figure S3: Evolution of potential energy in eV/atom for MLs GdX_2 during the AIMD simulations at 300 and 600 K for 4 ps. The insets in all cases refer to the snapshot of final configuration at the end of the AIMD simulations.

Figure S4: Average magnetic moment per Cr atom and magnetic susceptibility as a function of temperature for ML CrI₃ from MC simulations (J = 3.90 meV, A = 0.35 meV, and |S| = 3/2). Our estimated Curie temperature is 46 K, in excellent agreement with the experimental measurement of 45 K.

Figure S5: Spin-resolved band structures of MLs GdX_2 in the absence of the SOC effect in the FM ground state at the HSE06 level. The Fermi level is set to zero in all cases.

Figure S6: Orbital-resolved DOSs in the presence of spin polarization for ML $GdCl_2$ in the FM ground state at the PBE+U level. The Fermi level is set to zero in all panels.

Figure S7: Orbital-resolved DOSs in the presence of spin polarization for ML $GdBr_2$ in the FM ground state at the PBE+U level. The Fermi level is set to zero in all panels.

Figure S8: Calculated anomalous Hall conductivities of MLs GdX_2 with respect to the Fermi energy. The two vertical dashed lines in each panel refer to the energy extrema of two valleys, respectively.