Supplementary Information

Line-Search Method of Optimizing the Hamiltonian for Ensemble DFT

The Hamiltonian is optimized by a line-search algorithm in the space of Hamiltonian elements¹ for a fixed set of NGWFs. Let $\tilde{\mathbf{H}}^{(m)}$ denote the Hamiltonian that is formed from the *m*-th electron density, $n^{(m)}$, whose molecular orbitals were in turn solved from a trial Hamiltonian, $\mathbf{H}^{(m)}$, as

$$\mathbf{H}^{(m)}\mathbf{M}^{(m)} = \mathbf{S}\mathbf{M}^{(m)}\boldsymbol{\varepsilon}^{(m)} \tag{1}$$

where $\mathbf{H}^{(m)}$ and $\mathbf{\tilde{H}}^{(m)}$ are the matrix representations of the corresponding Hamiltonians in NGWFs, **S** is the overlap matrix of NGWFs, $\mathbf{M}^{(m)}$ is the coefficient matrix for the molecular orbitals expanded in NGWFs, and $\varepsilon^{(m)}$ is the diagonal matrix of orbital energies. According to the line-search algorithm, the next Hamiltonian is determined by

$$\mathbf{H}^{(m+1)} = \mathbf{H}^{(m)} + \lambda \Delta^{(m)} \tag{2}$$

with the definition of

$$\Delta^{(m)} \equiv \tilde{\mathbf{H}}^{(m)} - \mathbf{H}^{(m)} \tag{3}$$

and λ is a damping parameter fitted against a polynomial such that the Helmholtz free energy is minimized ^{1,2}. Equation (2) can then be rewritten as

$$\mathbf{H}^{(m+1)} = (1-\lambda)\mathbf{H}^{(m)} + \lambda \tilde{\mathbf{H}}^{(m)}$$
(4)

The line-search algorithm performs the iterations over *m* until the Liouville equation is satisfied when the commutator, $[\tilde{\mathbf{H}}^{(m)}, \mathbf{K}^{(m)}]$, attains zero, with the definition of the elements of the density kernel, **K**, as

$$K^{ij} = \sum_{k}^{N_{\text{elec}}} M^{i}{}_{k} f_{k} \left(\mathbf{M}^{\dagger} \right)_{k}{}^{j}$$
(5)

Derivation of Weighted Orthogonalization

Weighted orthogonalization (WO) was developed by West³ for orthogonalizing orbitals with arbitrary weights. Starting with $\mathbf{P} = (|p_1\rangle |p_2\rangle \cdots)$ as a nonorthogonal and normalized matrix of orbitals, it is preliminarily orthogonalized to yield $\mathbf{Q}' = (|q_1'\rangle |q_2'\rangle \cdots)$, which is an intermediate matrix that is orthogonal. Transformation of \mathbf{Q}' to \mathbf{Q} is performed by sweeps of 2-by-2 rotations such that the weighted overlap sum, OVLPS, is maximized:

$$OVLPS = \sum_{k} w_k \langle p_k | q_k \rangle$$
(6)

where w_k is the weight associated with $|p_k\rangle$. **Q** is the unknown and can be expressed in terms of the known intermediate matrix, **Q**'. For a pair of orbitals, the rotation angle, θ_{ij} , is evaluated from

$$\begin{pmatrix} |q_i\rangle & |q_j\rangle \end{pmatrix} = \begin{pmatrix} |q_i'\rangle & |q_j'\rangle \end{pmatrix} \begin{pmatrix} \cos\theta_{ij} & -\sin\theta_{ij} \\ \sin\theta_{ij} & \cos\theta_{ij} \end{pmatrix}^{\mathrm{T}}$$
(7)

$$|q_i\rangle = |q'_i\rangle\cos\theta_{ij} - |q'_j\rangle\sin\theta_{ij}$$
(8)

$$|q_j\rangle = |q_i'\rangle\sin\theta_{ij} + |q_j'\rangle\cos\theta_{ij}$$
⁽⁹⁾

which can be multiplied by the nonorthogonal counterparts with weights to obtain the weighted overlap sum for the pair, OVLPS_{ij}:

$$OVLPS_{ij} = w_i \langle p_i | q'_i \rangle \cos \theta_{ij} - w_i \langle p_i | q'_j \rangle \sin \theta_{ij} + w_j \langle p_j | q'_i \rangle \sin \theta_{ij} + w_j \langle p_j | q'_j \rangle \cos \theta_{ij}$$
(10)

Factoring by the trigonometric functions gives

$$OVLPS_{ij} = B_{ij}\cos\theta_{ij} + C_{ij}\sin\theta_{ij}$$
(11)

where

$$B_{ij} = w_i \langle p_i | q_i' \rangle + w_j \langle p_j | q_j' \rangle \tag{12}$$

$$C_{ij} = w_j \langle p_j | q_i' \rangle - w_i \langle p_i | q_j' \rangle$$
⁽¹³⁾

By using the trigonometric identity

$$\cos\left(\theta_{ij} - \gamma_{ij}\right) = \cos\theta_{ij}\cos\gamma_{ij} + \sin\theta_{ij}\sin\gamma_{ij} \tag{14}$$

the two terms in Equation (11) can be combined into one by multiplying Equation (14) with A_{ij} and comparing it:

$$OVLPS_{ij} = A_{ij} \cos\left(\theta_{ij} - \gamma_{ij}\right)$$
(15)

where

$$\cos\gamma_{ij} = \frac{B_{ij}}{A_{ij}} \tag{16}$$

$$\sin\gamma_{ij} = \frac{C_{ij}}{A_{ij}} \tag{17}$$

$$A_{ij} = \sqrt{B_{ij}^2 + C_{ij}^2}$$
(18)

OVLPS_{*ij*} is maximized when $\theta_{ij} = \gamma_{ij}$ in Equation (15). $\cos \gamma_{ij}$ and $\sin \gamma_{ij}$ are used to construct the rotation matrix in Equation (7) to determine $|q_i\rangle$ and $|q_j\rangle$. Rotations occur in sweeps, where each sweep is a sequence of Equation (7) for all pairs of *i* and *j*, and the process repeats until convergence is attained^{4,5}.

Notes and references

- 1 C. Freysoldt, S. Boeck and J. Neugebauer, Phys. Rev. B, 2009, 79, 241103.
- 2 N. Marzari, D. Vanderbilt and M. C. Payne, Phys. Rev. Lett., 1997, 79, 1337.
- 3 A. West, Computational and Theoretical Chemistry, 2014, 1045, 73-77.
- 4 S. Rajasekaran and M. Song, Journal of Parallel and Distributed Computing, 2008, 68, 769–777.
- 5 C. Sanderson and R. Curtin, Journal of Open Source Software, 2016, 1, 26.