Supplementary Information

Line-Search Method of Optimizing the Hamiltonian for Ensemble DFT

The Hamiltonian is optimized by a line-search algorithm in the space of Hamiltonian elements ${ }^{[1]}$ for a fixed set of NGWFs. Let $\tilde{\mathbf{H}}^{(m)}$ denote the Hamiltonian that is formed from the m-th electron density, $n^{(m)}$, whose molecular orbitals were in turn solved from a trial Hamiltonian, $\mathbf{H}^{(m)}$, as

$$
\begin{equation*}
\mathbf{H}^{(m)} \mathbf{M}^{(m)}=\mathbf{S} \mathbf{M}^{(m)} \boldsymbol{\varepsilon}^{(m)} \tag{1}
\end{equation*}
$$

where $\mathbf{H}^{(m)}$ and $\tilde{\mathbf{H}}^{(m)}$ are the matrix representations of the corresponding Hamiltonians in NGWFs, \mathbf{S} is the overlap matrix of NGWFs, $\mathbf{M}^{(m)}$ is the coefficient matrix for the molecular orbitals expanded in NGWFs, and $\boldsymbol{\varepsilon}^{(m)}$ is the diagonal matrix of orbital energies. According to the line-search algorithm, the next Hamiltonian is determined by

$$
\begin{equation*}
\mathbf{H}^{(m+1)}=\mathbf{H}^{(m)}+\lambda \Delta^{(m)} \tag{2}
\end{equation*}
$$

with the definition of

$$
\begin{equation*}
\Delta^{(m)} \equiv \tilde{\mathbf{H}}^{(m)}-\mathbf{H}^{(m)} \tag{3}
\end{equation*}
$$

and λ is a damping parameter fitted against a polynomial such that the Helmholtz free energy is minimized ${ }^{[12]}$. Equation (2) can then be rewritten as

$$
\begin{equation*}
\mathbf{H}^{(m+1)}=(1-\lambda) \mathbf{H}^{(m)}+\lambda \tilde{\mathbf{H}}^{(m)} \tag{4}
\end{equation*}
$$

The line-search algorithm performs the iterations over m until the Liouville equation is satisfied when the commutator, $\left[\tilde{\mathbf{H}}^{(m)}, \mathbf{K}^{(m)}\right]$, attains zero, with the definition of the elements of the density kernel, \mathbf{K}, as

$$
\begin{equation*}
K^{i j}=\sum_{k}^{N_{\text {elec }}} M^{i}{ }_{k} f_{k}\left(\mathbf{M}^{\dagger}\right)_{k}{ }^{j} \tag{5}
\end{equation*}
$$

Derivation of Weighted Orthogonalization

Weighted orthogonalization (WO) was developed by West ${ }^{[3]}$ for orthogonalizing orbitals with arbitrary weights. Starting with $\mathbf{P}=$ $\left(\left|p_{1}\right\rangle\left|p_{2}\right\rangle \cdots\right)$ as a nonorthogonal and normalized matrix of orbitals, it is preliminarily orthogonalized to yield $\mathbf{Q}^{\prime}=\left(\left|q_{1}^{\prime}\right\rangle\left|q_{2}^{\prime}\right\rangle \ldots\right)$, which is an intermediate matrix that is orthogonal. Transformation of \mathbf{Q}^{\prime} to \mathbf{Q} is performed by sweeps of 2-by-2 rotations such that the weighted overlap sum, OVLPS, is maximized:

$$
\begin{equation*}
\mathrm{OVLPS}=\sum_{k} w_{k}\left\langle p_{k} \mid q_{k}\right\rangle \tag{6}
\end{equation*}
$$

where w_{k} is the weight associated with $\left|p_{k}\right\rangle . \mathbf{Q}$ is the unknown and can be expressed in terms of the known intermediate matrix, \mathbf{Q}^{\prime}. For a pair of orbitals, the rotation angle, $\theta_{i j}$, is evaluated from

$$
\begin{align*}
\left(\begin{array}{ll}
\left|q_{i}\right\rangle \quad\left|q_{j}\right\rangle
\end{array}\right) & =\left(\begin{array}{ll}
\left|q_{i}^{\prime}\right\rangle & \left|q_{j}^{\prime}\right\rangle
\end{array}\right)\left(\begin{array}{cc}
\cos \theta_{i j} & -\sin \theta_{i j} \\
\sin \theta_{i j} & \cos \theta_{i j}
\end{array}\right)^{\mathrm{T}} \tag{7}\\
\left|q_{i}\right\rangle & =\left|q_{i}^{\prime}\right\rangle \cos \theta_{i j}-\left|q_{j}^{\prime}\right\rangle \sin \theta_{i j} \tag{8}\\
\left|q_{j}\right\rangle & =\left|q_{i}^{\prime}\right\rangle \sin \theta_{i j}+\left|q_{j}^{\prime}\right\rangle \cos \theta_{i j} \tag{9}
\end{align*}
$$

which can be multiplied by the nonorthogonal counterparts with weights to obtain the weighted overlap sum for the pair, OVLPS ${ }_{i j}$:

$$
\begin{align*}
\operatorname{OVLPS}_{i j}= & w_{i}\left\langle p_{i} \mid q_{i}^{\prime}\right\rangle \cos \theta_{i j}-w_{i}\left\langle p_{i} \mid q_{j}^{\prime}\right\rangle \sin \theta_{i j} \tag{10}\\
& +w_{j}\left\langle p_{j} \mid q_{i}^{\prime}\right\rangle \sin \theta_{i j}+w_{j}\left\langle p_{j} \mid q_{j}^{\prime}\right\rangle \cos \theta_{i j}
\end{align*}
$$

Factoring by the trigonometric functions gives

$$
\begin{equation*}
\mathrm{OVLPS}_{i j}=B_{i j} \cos \theta_{i j}+C_{i j} \sin \theta_{i j} \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& B_{i j}=w_{i}\left\langle p_{i} \mid q_{i}^{\prime}\right\rangle+w_{j}\left\langle p_{j} \mid q_{j}^{\prime}\right\rangle \tag{12}\\
& C_{i j}=w_{j}\left\langle p_{j} \mid q_{i}^{\prime}\right\rangle-w_{i}\left\langle p_{i} \mid q_{j}^{\prime}\right\rangle \tag{13}
\end{align*}
$$

By using the trigonometric identity

$$
\begin{equation*}
\cos \left(\theta_{i j}-\gamma_{i j}\right)=\cos \theta_{i j} \cos \gamma_{i j}+\sin \theta_{i j} \sin \gamma_{i j} \tag{14}
\end{equation*}
$$

the two terms in Equation (11) can be combined into one by multiplying Equation (14) with $A_{i j}$ and comparing it:

$$
\begin{equation*}
\mathrm{OVLPS}_{i j}=A_{i j} \cos \left(\theta_{i j}-\gamma_{i j}\right) \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
\cos \gamma_{i j} & =\frac{B_{i j}}{A_{i j}} \tag{16}\\
\sin \gamma_{i j} & =\frac{C_{i j}}{A_{i j}} \tag{17}\\
A_{i j} & =\sqrt{B_{i j}^{2}+C_{i j}^{2}} \tag{18}
\end{align*}
$$

OVLPS $_{i j}$ is maximized when $\theta_{i j}=\gamma_{i j}$ in Equation (15). $\cos \gamma_{i j}$ and $\sin \gamma_{i j}$ are used to construct the rotation matrix in Equation (7) to determine $\left|q_{i}\right\rangle$ and $\left|q_{j}\right\rangle$. Rotations occur in sweeps, where each sweep is a sequence of Equation (7) for all pairs of i and j, and the process repeats until convergence is attained ${ }^{455}$.

Notes and references

1 C. Freysoldt, S. Boeck and J. Neugebauer, Phys. Rev. B, 2009, 79, 241103.
2 N. Marzari, D. Vanderbilt and M. C. Payne, Phys. Rev. Lett., 1997, 79, 1337.
3 A. West, Computational and Theoretical Chemistry, 2014, 1045, 73-77.
4 S. Rajasekaran and M. Song, Journal of Parallel and Distributed Computing, 2008, 68, 769-777.
5 C. Sanderson and R. Curtin, Journal of Open Source Software, 2016, 1, 26.

