Supplementary Information

Effect of local coordination on catalytic activities and selectivities of Fe-based catalysts for N₂ reduction Xiaohui Zhang,^a Tianyi Wang,^{b,c} Congyun Zhang,^a Yihui Zou,^a Jun Ren,^d Pengcheng Cai,^a Chenghua Sun,^{*,b,c} and Dongjiang Yang^{*,a,e}

^aSchool of Environmental Science and Engineering, State Key Laboratory of Biofibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China

^bSchool of Chemical Engineering and Energy Technology, Dongguan University of

Technology, Dongguan 523808, P. R. China

^cDepartment of Chemistry and Biotechnology and Centre for Translational

Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University

of Technology, Hawthorn, Victoria 3122, Australia

^dSchool of Chemical and Environmental Engineering, North University of China,

Taiyuan, 030051, P. R. China

eQueensland Micro- and Nanotechnology Centre (QMNC), Griffith University,

Nathan Campus, Brisbane, Queensland, 4111, Australia

*Corresponding authors: <u>chenghuasun@swin.edu.au</u> (C. Sun);

d.yang@qdu.edu.cn (D. Yang)

Scheme: Schematic depiction of three mechanisms for NRR on $Fe_{1/2/3}C_xN_y$. The Fe represents the Fe atom active on the electrocatalyst.

Fig. S1 Free energy diagrams of $Fe_1C_xN_y$ on (a) distal pathway, (b) alternative pathway and (c) enzymatic pathway.

Fig. S2 (a)-(d) The number of Bader charge for the carbon atoms on the different C_xN_y ligand environments; (e)-(h) the charge density difference of the corresponding ligand environment.

Fig. S3 The side views of geometry structure of (a) 2-Fe_2C_3 and (b) $2\text{-Fe}_2C_1N_2$; (c) schematic depiction of the reaction pathways of Fe₂C₃ and 2-Fe_2C_3 ; (d) schematic depiction of the reaction pathways of Fe₂C₁N₂ and $2\text{-Fe}_2C_1N_2$.

Fig. S4 The side views of geometry structure of (a) $Fe_2C_2N_1$ and Fe_2N_3 ; free energy diagrams of $Fe_2C_2N_1$ and Fe_2N_3 on (b) distal pathway, (c) alternative pathway and (d) enzymatic pathway.

Fig. S5 The side views of geometry structure of (a) Fe_3C_3 , (b) $Fe_3C_2N_1$, (c) $Fe_3C_1N_2$ and (d) Fe_3N_3 ; free energy diagrams of $Fe_3C_xN_y$ on (c) distal pathway, (d) alternative pathway and (e) enzymatic pathway.

Fig. S6 Free energy diagrams of the HER on the catalysts.

Fig. S7 The corresponding intermediate configurations on the distal pathways of $Fe_2C_1N_2$.

Fig. S8 Free energy diagrams of Fe_2C_3 and $Fe_2C_1N_2$ on (a) alternative pathway and (b) enzymatic pathway.

Adsorption	ΔΖΡΕ	ΤΔS
species	(eV)	(eV)
*N2	0.156	0.116
*NNH	0.350	0.183
*NNH ₂	0.731	0.179
*N	0.027	0.118
*NH	0.266	0.117
*NH ₂	0.624	0.179
*NH ₃	0.951	0.149
*NHNH	0.827	0.207
*NHNH ₂	1.115	0.243
*NH ₂ NH ₂	1.475	0.160
*NH ₂	0.624	0.179
*NH ₃	0.951	0.149

Table S1 The calculated ΔZPE and T \DeltaS of various NRR reaction intermediates of Fe_{1/2/3}C_xN_y.

Ligand Environment	Average (e)
C ₃	-0.111
C_2N_1	-0.092
C_1N_2	-0.216
N_3	-0.419

Table S2 The average of the Bader charge on the different $C_x N_y$ ligand environments.

Catalyst	d _{N-N} (Å)	Charge (e)	$\Delta G_{max}(eV)$
Fe ₂ C ₂ N ₁	1.17	0.38	1.33
Fe ₂ N ₃	1.18	0.34	1.30
Fe ₃ C ₃	1.15	0.24	1.28
$Fe_3C_2N_1$	1.13	0.22	1.93
$Fe_3C_1N_2$	1.15	0.28	1.24
Fe ₃ N ₃	1.16	0.41	0.88

Table S3 N=N bond length, Bader charge of the absorbed N₂ and calculated ΔG_{max}

for the catalysts.

Catalysts	ΔG _{max} (eV)	References
Fe(110)	1.39	10.1039/c8cy01845f. ¹
Ti@N ₄	0.69	10.1021/acscatal.8b00905. ²
Fe-Ti _{DA} /GS	0.88	10.1016/j.electacta.2020.135667. ³
MoS_2	0.68	10.1002/adma.201800191.4
Fe _{SA} /MoS ₂	1.01	10.1039/c7cp08626a. ⁵
Fe@Fe-N ₃ /C-CNTs	1.66	10.1021/acscatal.8b03802.6
FeN ₄ -NG	1.12	10.1016/j.jcat.2020.05.009. ⁷
$Fe_2C_1N_2$	0.62	This work

Table S4 The ΔG_{max} of PLS for NRR on different catalysts.

Atom	X	Y	Z
С	0.991819	0.002322	0.082669
С	0.125036	0.068823	0.083569
С	0.191746	0.002273	0.083545
С	0.325073	0.068817	0.084820
С	0.391873	0.002292	0.086427
С	0.525046	0.068754	0.086698
С	0.591545	0.001821	0.088759
С	0.724938	0.068794	0.085191
С	0.791626	0.002292	0.084716
С	0.924968	0.068802	0.082801
С	0.991424	0.202115	0.084009
С	0.124522	0.268378	0.088175
С	0.191513	0.201997	0.087484
С	0.324628	0.267968	0.090967
С	0.391857	0.201971	0.087356
С	0.525192	0.268329	0.087691
С	0.591870	0.201906	0.085529
С	0.725004	0.268632	0.084301
С	0.791625	0.202101	0.083447
С	0.924868	0.268791	0.083940
С	0.991864	0.402341	0.086284
С	0.123889	0.468455	0.093871
С	0.190529	0.401424	0.096403
С	0.320682	0.461627	0.107968
С	0.391102	0.400982	0.099528
С	0.525309	0.467333	0.097553
С	0.592040	0.401630	0.090443
С	0.725297	0.468560	0.086507
С	0.791706	0.401895	0.084095
С	0.924929	0.468830	0.084142
С	0.991551	0.602062	0.083987
С	0.124592	0.668973	0.087958
С	0.190607	0.602262	0.097089
С	0.320208	0.672245	0.110253
С	0.531160	0.672409	0.109078
С	0.592893	0.602476	0.098414
С	0.726379	0.669273	0.090038
С	0.792108	0.602038	0.086097
С	0.925246	0.669016	0.083338
С	0.991885	0.802392	0.082905
С	0.125134	0.869039	0.083344

Table S5 The atomic fractional coordinates of the Fe_2C_3 .

С	0.191645	0.802324	0.086907
С	0.324843	0.869059	0.089787
С	0.391295	0.802648	0.098993
С	0.525341	0.869675	0.096257
С	0.592370	0.803097	0.097673
С	0.725199	0.869160	0.088928
С	0.792117	0.802529	0.087672
С	0.925301	0.869100	0.083573
Fe	0.391124	0.599318	0.162874
Fe	0.567721	0.572559	0.211729

Atom	Х	Y	Z
С	0.991068	0.004627	0.175106
С	0.124327	0.071368	0.176612
С	0.190949	0.004547	0.175142
С	0.324267	0.071084	0.177853
С	0.390936	0.004295	0.179953
С	0.523879	0.069829	0.182914
С	0.589072	0.000977	0.185267
С	0.723195	0.069815	0.182611
С	0.790853	0.004481	0.179570
С	0.924162	0.071197	0.177799
С	0.990529	0.204342	0.183126
С	0.123337	0.270465	0.188737
С	0.190402	0.204110	0.184038
С	0.323600	0.270063	0.187832
С	0.390797	0.204269	0.182788
С	0.524168	0.271183	0.186079
С	0.590609	0.203851	0.183973
С	0.723812	0.270409	0.185047
С	0.790521	0.203850	0.183858
С	0.924209	0.271178	0.186256
С	0.992275	0.405348	0.191006
С	0.125025	0.471978	0.201168
С	0.189479	0.401120	0.204858
С	0.317006	0.456975	0.222336
С	0.387789	0.401094	0.203108
С	0.524309	0.472330	0.200195
С	0.590683	0.405266	0.190644
С	0.724074	0.470812	0.185901
С	0.790573	0.403722	0.185031
С	0.924135	0.470741	0.186015
С	0.990196	0.603752	0.182723
С	0.123246	0.671093	0.185542
С	0.190612	0.607576	0.198996
С	0.594254	0.608303	0.196827
С	0.725507	0.671389	0.184488
С	0.791149	0.603953	0.182534
С	0.924023	0.670595	0.178830
С	0.990721	0.803883	0.175129
С	0.123972	0.870924	0.175026
С	0.190164	0.804349	0.180470
С	0.323437	0.871052	0.182908

Table S6 The atomic fractional coordinates of the $Fe_2C_1N_2.$

С	0.386392	0.802198	0.194149
С	0.521967	0.866705	0.191968
С	0.593402	0.802612	0.192393
С	0.725252	0.871306	0.181923
С	0.791823	0.804556	0.179578
С	0.924651	0.871071	0.174772
Ν	0.317493	0.677172	0.208380
Ν	0.536167	0.677100	0.204623
Fe	0.480335	0.465261	0.336340
Fe	0.398008	0.614635	0.271708

Supplementary references

- 1 G. Rostamikia, S. Maheshwari and M.J. Janik, Catal. Sci. Technol., 2019, 9 174-181.
- 2 C. Choi, S. Back, N.-Y. Kim, J. Lim, Y.-H. Kim and Y. Jung, ACS Catal., 2018, 8 7517-7525.
- W. Yang, H. Huang, X. Ding, Z. Ding, C. Wu, I.D. Gates and Z. Gao, Electrochim. Acta, 2020,
 335, 135667.
- L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A.M. Asiri, L. Chen, B. Tang and X. Sun, Adv.
 Mater., 2018, 30, 1800191.
- 5 J. Zhao, J. Zhao and Q. Cai, Phys. Chem. Chem. Phys., 2018, **20**, 9248-9255.
- Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng, C. Wang, Z.
 Zhang and W. Zheng, ACS Catal., 2019, 9, 336-344.
- 7 T. He, A.R. Puente Santiago and A. Du, J. Catal., 2020, **388**, 77-83.